中考数学压轴题十大类型经典题目打印版.doc
《中考数学压轴题十大类型经典题目打印版.doc》由会员分享,可在线阅读,更多相关《中考数学压轴题十大类型经典题目打印版.doc(269页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、Four short words sum up what has lifted most successful individuals above the crowd: a little bit more.-author-date中考数学压轴题十大类型经典题目打印版第一讲 中考压轴题十大类型之动点问题(2011吉林)如图,梯形ABCD中,ADBC,BAD=90,CEAD于点E,AD=8cm,BC=4cm,AB=5cm从初始时刻开始,动点P,Q 分别从点A,B同时出发,运动速度均为1cm/s,动点P沿A-B-C-E方向运动,到点E停止;动点Q沿B-C-E-D方向运动,到点D停止,设运动时间为s,
2、PAQ的面积为y cm2,(这里规定:线段是面积为0的三角形)解答下列问题:(1) 当x=2s时,y=_ cm2;当=s时,y=_ cm2(2)当5 x 14时,求y与x之间的函数关系式(3)当动点P在线段BC上运动时,求出S梯形ABCD时的值(4)直接写出在整个运动过程中,使PQ与四边形ABCE的对角线平行的所有x的值(2007河北)如图,在等腰梯形ABCD中,ADBC,AB=DC=50,AD=75,BC=135点P从点B出发沿折线段BA-AD-DC以每秒5个单位长的速度向点C匀速运动;点Q从点C出发沿线段CB方向以每秒3个单位长的速度匀速运动,过点Q向上作射线QKBC,交折线段CD-DA-
3、AB于点E点P、Q同时开始运动,当点P与点C重合时停止运动,点Q也随之停止设点P、Q运动的时间是t秒(t0)(1)当点P到达终点C时,求t的值,并指出此时BQ的长;(2)当点P运动到AD上时,t为何值能使PQDC?(3)设射线QK扫过梯形ABCD的面积为S,分别求出点E运动到CD、DA上时,S与t的关系式;(4)PQE能否成为直角三角形?若能,写出t的取值范围;若不能,请说明理由备用图 (2008河北)如图,在中,C=90,AB=50,AC=30,D,E,F分别是AC,AB,BC的中点点从点出发沿折线DE-EF-FC-CD以每秒7个单位长的速度匀速运动;点从点出发沿方向以每秒4个单位长的速度匀
4、速运动,过点作射线,交折线BC-CA于点点同时出发,当点绕行一周回到点时停止运动,点也随之停止设点运动的时间是秒()(1)两点间的距离是 ;(2)射线能否把四边形分成面积相等的两部分?若能,求出的值若不能,说明理由;(3)当点运动到折线上,且点又恰好落在射线上时,求的值;(4)连结,当时,请直接写出的值(2011山西太原)如图,在平面直角坐标系中,四边形OABC是平行四边形直线经过O、C两点点A的坐标为(8,0),点B的坐标为(11,4),动点P在线段OA上从点O出发以每秒1个单位的速度向点A运动,同时动点Q从点A出发以每秒2个单位的速度沿ABC的方向向点C运动,过点P作PM垂直于x轴,与折线
5、O-C-B相交于点M当P、Q两点中有一点到达终点时,另一点也随之停止运动,设点P、Q运动的时间为t秒(),MPQ的面积为S(1)点C的坐标为_,直线的解析式为_(2)试求点Q与点M相遇前S与t的函数关系式,并写出相应的t的取值范围(3)试求题(2)中当t为何值时,S的值最大,并求出S的最大值(4)随着P、Q两点的运动,当点M在线段CB上运动时,设PM的延长线与直线相交于点N试探究:当t为何值时,QMN为等腰三角形?请直接写出t的值1. (2011四川重庆)如图,矩形ABCD中,AB6,BC2,点O是AB的中点,点P在AB的延长线上,且BP3一动点E从O点出发,以每秒1个单位长度的速度沿OA匀速
6、运动,到达A点后,立即以原速度沿AO返回;另一动点F从P点出发,以每秒1个单位长度的速度沿射线PA匀速运动,点E、F同时出发,当两点相遇时停止运动在点E、F的运动过程中,以EF为边作等边EFG,使EFG和矩形ABCD在射线PA的同侧,设运动的时间为t秒(t0)(1)当等边EFG的边FG恰好经过点C时,求运动时间t的值;(2)在整个运动过程中,设等边EFG和矩形ABCD重叠部分的面积为S,请直接写出S与t之间的函数关系式和相应的自变量t的取值范围;(3)设EG与矩形ABCD的对角线AC的交点为H,是否存在这样的t,使AOH是等腰三角形?若存在,求出对应的t的值;若不存在,请说明理由备用图1备用图
7、2三、测试提高 1 (2011山东烟台)如图,在直角坐标系中,梯形ABCD的底边AB在x轴上,底边CD的端点D在y轴上直线CB的表达式为,点A、D的坐标分别为(4,0),(0,4)动点P自A点出发,在AB上匀速运动动点Q自点B出发,在折线BCD上匀速运动,速度均为每秒1个单位当其中一个动点到达终点时,它们同时停止运动设点P运动t(秒)时,OPQ的面积为S(不能构成OPQ的动点除外)(1)求出点B、C的坐标;(2)求S随t变化的函数关系式;(3)当t为何值时S有最大值?并求出最大值 备用图1. (2011浙江温州)如图,在平面直角坐标系中,O是坐标原点,点A的坐标为(-4,0),点B的坐标为(0
8、,b)(b0)P是直线AB上的一个动点,作PCx轴,垂足为 C,记点P关于y轴的对称点为P (点P不在y轴上),连结P P,PA,PC,设点P的横坐标为a(1) 当b=3时, 直线AB的解析式; 若点P的坐标是(-1,m),求m的值;(2)若点P在第一象限,记直线AB与PC的交点为D当PD:DC=1:3时,求a的值;(3)是否同时存在a,b,使PCA为等腰直角三角形?若存在,请求出所有满足要求的a,b的值;若不存在,请说明理由(2010武汉)如图,抛物线经过A(1,0),C(2,)两点,与x轴交于另一点B(1)求此抛物线的解析式;(2)若抛物线的顶点为M,点P为线段OB上一动点 (不与点B重合
9、),点Q在线段MB上移动,且MPQ=45,设线段OP=x,MQ=,求y2与x的函数关系式,并直接写出自变量x的取值范围;(3)在同一平面直角坐标系中,两条直线x=m,x=n分别与抛物线交于点E,G,与(2)中的函数图象交于点F,H问四边形EFHG能否为平行四边形? 若能,求m,n之间的数量关系;若不能,请说明理由备用图 (2011江苏镇江)在平面直角坐标系xOy中,直线过点A(1,0)且与y轴平行,直线过点B(0,2)且与x轴平行,直线与相交于点P点E为直线上一点,反比例函数(k0)的图象过点E且与直线相交于点F(1)若点E与点P重合,求k的值;(2)连接OE、OF、EF若k2,且OEF的面积
10、为PEF的面积2倍,求点E的坐标;(3)是否存在点E及轴上的点M,使得以点M、E、F为顶点的三角形与PEF全等?若存在,求E点坐标;若不存在,请说明理由(2010浙江舟山)ABC中,A=B=30,AB=把ABC放在平面直角坐标系中,使AB的中点位于坐标原点O(如图),ABC可以绕点O作任意角度的旋转(1)当点B在第一象限,纵坐标是时,求点B的横坐标;(2)如果抛物线(a0)的对称轴经过点C,请你探究:当,时,A,B两点是否都在这条抛物线上?并说明理由;OyxCBA11-1-1设b=2am,是否存在这样的m值,使A,B两点不可能同时在这条抛物线上?若存在,直接写出m的值;若不存在,请说明理由(湖
11、北黄冈)已知二次函数的图象如图所示(1)求二次函数的解析式及抛物线顶点M的坐标;(2)若点N为线段BM上的一点,过点N作x轴的垂线,垂足为点Q当点N在线段BM上运动时(点N不与点B,点M重合),设OQ的长为t,四边形NQAC面积为S,求S与t之间的函数关系式及自变量t的取值范围;(3)在对称轴右侧的抛物线上是否存在点P,使PAC为直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由;(4)将OAC补成矩形,使得OAC的两个顶点成为矩形一边的两个顶点,第三个顶点落在矩形这一边的对边上,试直接写出矩形的未知的顶点坐标(不需要计算过程)三、测试提高1 (2011山东东营)如图所示,
12、四边形OABC是矩形,点A、C的坐标分别为(),(0,1),点D是线段BC上的动点(与端点B、C不重合),过点D作直线交折线OAB于点E(1)记ODE的面积为S求S与b的函数关系式;(2)当点E在线段OA上时,且tanDEO=若矩形OABC关于直线DE的对称图形为四边形试探究四边形与矩形OABC的重叠部分的面积是否发生变化,若不变,求出该重叠部分的面积;若改变,请说明理由 (2011辽宁大连)如图,抛物线yax2+bx+c经过A(1,0)、B(3,0)、C(0,3)三点,对称轴与抛物线相交于点P、与直线BC相交于点M,连接PB(1)求该抛物线的解析式;(2)抛物线上是否存在一点Q,使QMB与P
13、MB的面积相等,若存在,求点Q的坐标;若不存在,说明理由;(3)在第一象限、对称轴右侧的抛物线上是否存在一点R,使RPM与RMB的面积相等,若存在,直接写出点R的坐标;若不存在,说明理由(2011湖北十堰)如图,己知抛物线y=x2+bx+c与x轴交于点A(1,0)和点 B,与y轴交于点C(0,-3)(1)求抛物线的解析式;(2)如图(1),己知点H(0,-1)问在抛物线上是否存在点G (点G在y轴的左侧),使得SGHC=SGHA?若存在,求出点G的坐标,若不存在,请说明理由:(3)如图(2),抛物线上点D在x轴上的正投影为点E(2,0),F是OC的中点,连接DF,P为线段BD上的一点,若EPF
14、=BDF,求线段PE的长(2010天津)在平面直角坐标系中,已知抛物线与轴交于点、(点在点的左侧),与轴的正半轴交于点,顶点为()若,求此时抛物线顶点的坐标;()将()中的抛物线向下平移,若平移后,在四边形ABEC中满足SBCE = SABC,求此时直线的解析式;()将()中的抛物线作适当的平移,若平移后,在四边形ABEC中满足SBCE =2SAOC,且顶点恰好落在直线上,求此时抛物线的解析式(2011山东聊城)如图,在矩形ABCD中,AB12cm,BC8cm点E、F、G分别从点A、B、C同时出发,沿矩形的边按逆时针方向移动,点E、G的速度均为2cm/s,点F的速度为4cm/s,当点F追上点G
15、(即点F与点G重合)时,三个点随之停止移动设移动开始后第ts时,EFG的面积为Scm2(1)当t1s时,S的值是多少?(2)写出S与t之间的函数解析式,并指出自变量t的取值范围;AEBFCGD(3)若点F在矩形的边BC上移动,当t为何值时,以点B、E、F为顶点的三角形与以C、F、G为顶点的三角形相似?请说明理由5. (2011江苏淮安)如图,在RtABC中,C=90,AC=8,BC=6,点P在AB上,AP=2,点E、F同时从点P出发,分别沿PA、PB以每秒1个单位长度的速度向点A、B匀速运动,点E到达点A后立刻以原速度沿AB向点B运动,点F运动到点B时停止,点E也随之停止在点E、F运动过程中,
16、以EF为边作正方形EFGH,使它与ABC在线段AB的同侧设E、F运动的时间为t秒(t0),正方形EFGH与ABC重叠部分面积为S(1)当t=1时,正方形EFGH的边长是当t=3时,正方形EFGH的边长是(2)当0t2时,求S与t的函数关系式;(3)直接答出:在整个运动过程中,当t为何值时,S最大?最大面积是多少?备用图三、测试提高1. (2010山东东营)如图,在锐角三角形ABC中,BC=12,ABC的面积为48,D,E分别是边AB,AC上的两个动点(D不与A,B重合),且保持DEBC,以DE为边,在点A的异侧作正方形DEFG(1)当正方形DEFG的边GF在BC上时,求正方形DEFG的边长;(
17、2)设DE = x,ABC与正方形DEFG重叠部分的面积为y,试求y关于x的函数关系式,写出x的取值范围,并求出y的最大值BADEFGCB备用图(1)ACB备用图(2)AC第四讲 中考压轴题十大类型之 三角形存在性问题板块一、等腰三角形存在性1. (2011江苏盐城)如图,已知一次函数与正比例函数的图象交于点A,且与x轴交于点B(1)求点A和点B的坐标;(2)过点A作ACy轴于点C,过点B作直线ly轴动点P从点O出发,以每秒1个单位长的速度,沿OCA的路线向点A运动;同时直线l从点B出发,以相同速度向左平移,在平移过程中,直线l交x轴于点R,交线段BA或线段AO于点Q当点P到达点A时,点P和直
18、线l都停止运动在运动过程中,设动点P运动的时间为t秒是否存在以A、P、Q为顶点的三角形是等腰三角形?若存在,求t的值;若不存在,请说明理由(备用图)(2009湖北黄冈)如图,在平面直角坐标系xOy中,抛物线与x轴的交点为点A,与y轴的交点为点B,过点B作x轴的平行线BC,交抛物线于点C,连结AC现有两动点P,Q分别从O,C两点同时出发,点P以每秒4个单位的速度沿OA向终点A移动,点Q以每秒1个单位的速度沿CB向点B移动,点P停止运动时,点Q也同时停止运动,线段OC,PQ相交于点D,过点D作DEOA,交CA于点E,射线QE交x轴于点F设动点P,Q移动的时间为t(单位:秒)(1)求A,B,C三点的
19、坐标和抛物线的顶点的坐标;(2)当t为何值时,四边形PQCA为平行四边形?请写出计算过程;(3)当时,PQF的面积是否总为定值?若是,求出此定值,若不是,请说明理由;(4)当t为何值时,PQF为等腰三角形?请写出解答过程板块二、直角三角形(2009四川眉山)如图,已知直线与轴交于点A,与x轴交于点D,抛物线与直线交于A、E两点,与x轴交于B、C两点,且B点坐标为 (1,0)(1)求该抛物线的解析式;(2) 动点P在x轴上移动,当PAE是直角三角形时,求点P的坐标(2010广东中山)如图所示,矩形ABCD的边长AB=6,BC=4,点F在DC上,DF=2动点M、N分别从点D、B同时出发,沿射线DA
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考 数学 压轴 题十大 类型 经典 题目 打印
限制150内