《八年级上册北师大版数学第二章-实数总结.doc》由会员分享,可在线阅读,更多相关《八年级上册北师大版数学第二章-实数总结.doc(67页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、Four short words sum up what has lifted most successful individuals above the crowd: a little bit more.-author-date八年级上册北师大版数学第二章-实数总结八年级上册北师大版数学第二章-实数总结第二章 实数一、实数的概念及分类 1. 有理数,无理数概念:有理数: 整数和分数的统称(任何有限小数和无限循环小数都是有理数)。无理数: 无限不循环小数叫做无理数。实数: 是有理数和无理数的统称;2.分类:a 按定义分b 按正负分 正有理数 正实数 实数 零 正无理数 负有理数 负实数 负无理
2、数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如等;(2)有特定意义的数,如圆周率,或化简后含有的数,如+8等;(3)有特定结构的数,如0.1010010001等;例1.(1)下列各数:3.141、0.33333、0.3030003000003(相邻两个3之间0的个数逐次增加2)、其中是有理数的有;是无理数的有。(填序号)(2)有五个数:0.125125,0.1010010001,-,其中无理数有 ( )个 A 2 B 3 C 4 D 5 二、实数的倒数、相反数和绝对值 1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是
3、零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=b,反之亦成立。2、绝对值在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。(|a|0)。零的绝对值是它本身,也可看成它的相反数,若|a|=a,则a0;若|a|=-a,则a0。3、倒数如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。零没有倒数。4、数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。5、估算三、平方根、算数平方根和立方根 1、算
4、术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算术平方根。特别地,0的算术平方根是0。表示方法:记作“”,读作根号a。性质:正数和零的算术平方根都只有一个,零的算术平方根是零。2、平方根:一般地,如果一个数x的平方等于a,即x2=a,那么这个数x就叫做a的平方根(或二次方根)。表示方法:正数a的平方根记做“”,读作“正、负根号a”。性质:一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。开平方:求一个数a的平方根的运算,叫做开平方。 注意的双重非负性: 03、算术平方根与平方根的关系:算术平方根是平方根中正的一个值,它与它的相反数共同构成
5、了平方根。因此,算术平方根只有一个值,并且是非负数,它只表示为:;而平方根具有两个互为相反数的值,表示为:。例2.(1) 的平方是64,所以64的平方根是 ;(2) 的平方根是它本身。(3)若的平方根是2,则x= ;的平方根是 (4)当x 时,有意义。(5)一个正数的平方根分别是m和m-4,则m的值是多少?这个正数是多少?3、立方根一般地,如果一个数x的立方等于a,即x3=a那么这个数x就叫做a 的立方根(或三次方根)。表示方法:记作性质:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。注意:,这说明三次根号内的负号可以移到根号外面。例3.(1)64的立方根是(2)若,则b
6、等于( ) A. 1000000 B. 1000 C. 10 D. 10000(3)下列说法中:都是27的立方根,的立方根是2,。其中正确的有 ( )A、1个 B、2个 C、3个 D、4个例3.(1)下列说法正确的是 ( ) A1的立方根是 B;(C)、的平方根是; ( D)、0没有平方根; (2)下列各式正确的是( )A、 B、 C、 D、(3)的算术平方根是 。(4)若有意义,则_。(5)已知ABC的三边分别是且满足,求c的取值范围。(6)已知:A=是的算术平方根,B=是的立方根。求AB的平方根。(7)(提高题)如果x、y分别是4的整数部分和小数部分。求x y的值.四、实数大小的比较 1、
7、实数比较大小:正数大于零,负数小于零,正数大于一切负数;数轴上的两个点所表示的数,右边的总比左边的大;两个负数,绝对值大的反而小。2、实数大小比较的几种常用方法(1)数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。(2)求差比较:设a、b是实数,(3)平方法:设a、b是两负实数,则。五、算术平方根有关计算(二次根式)1、含有二次根号“”;被开方数a必须是非负数。2、性质:(1) (2) (3) ()(4) ()3、最简二次根式:运算结果若含有“”形式,必须满足:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽方的因数或因式六、实数的运算 (1)六种运算:加、减、乘、
8、除、乘方、开方(2)实数的运算顺序先算乘方和开方,再算乘除,最后算加减,如果有括号,就先算括号里面的。(3)运算律:运算律在无理数范围内仍然适用加法交换律 加法结合律 乘法交换律 乘法结合律 乘法对加法的分配律 例5.(1)下列说法正确的是( );A、任何有理数均可用分数形式表示 ; B、数轴上的点与有理数一一对应 ;C、1和2之间的无理数只有 ; D、不带根号的数都是有理数。(2)a,b在数轴上的位置如图所示,则下列各式有意义的是( )b0aA、 B、 C、 D、(3)比较大小(填“”或“0,则ab=1;()2把下列各数分别填入相应的集合里|3|,213,1234,,0,, , ()0,32
9、,ctg45,1.2121121112中 无理数集合 负分数集合 整数集合 非负数集合 *3已知1x2,则|x3|+等于()(A)2x(B)2(C)2x(D)24下列各数中,哪些互为相反数?哪些互为倒数?哪些互为负倒数?3, 1, 3, 03, 31, 1 +, 3互为相反数: 互为倒数: 互为负倒数: *5已知、是实数,且(X)2和2互为相反数,求,y的值6.,b互为相反数,c,d互为倒数,m的绝对值是2,求+4m-3cd= 。*7已知0,求= 。三、解题指导:1下列语句正确的是()(A)无尽小数都是无理数(B)无理数都是无尽小数(C)带拫号的数都是无理数(D)不带拫号的数一定不是无理数。2
10、和数轴上的点一一对应的数是()(A)整数 (B)有理数 (C)无理数(D)实数3零是()(A) 最小的有理数 (B)绝对值最小的实数(C)最小的自然数 (D)最小的整数4.如果a是实数,下列四种说法:(1)2和都是正数,(2),那么一定是负数,(3)的倒数是,(4)和的两个分别在原点的两侧,几个是正确的()(A)0(B)1(C)2(D)3*5比较下列各组数的大小:(1) (2) (3)ab0时, 6若a,b满足=0,则的值是 *7实数a,b,c在数轴上的对应点如图,其中O是原点,且|a|=|c|(1) 判定a+b,a+c,c-b的符号(2) 化简|a|-|a+b|+|a+c|+|c-b|*8数
11、轴上点A表示数1,若AB3,则点B所表示的数为 9已知x0,且y|x|,用0b0 y 0 图像经过一、二、三象限,y随x的增大而增大。b0 y 0 x图像经过一、三、四象限,y随x的增大而增大。K0 y 0 x 图像经过一、二、四象限,y随x的增大而减小b0时,图像经过第一、三象限,y随x的增大而增大;(2)当k0时,y随x的增大而增大(2)当k0时,y随x的增大而减小6、正比例函数和一次函数解析式的确定确定一个正比例函数,就是要确定正比例函数定义式(k0)中的常数k。确定一个一次函数,需要确定一次函数定义式(k0)中的常数k和b。解这类问题的一般方法是待定系数法。7、一次函数与一元一次方程的关系: 任何一个一元一次方程都可转化为:kx+b=0(k、b为常数,k0)的形式 而一次函数解析式形式正是y=kx+b(k、b为常数,k0)当函数值为0时,即kx+b=0就与一元一次方程完全相同 结论:由于任何一元一次方程都可转化为kx+b=0(k、b为常数,k0)的形式所以解一元一次方程可以转化为:当一次函数值为0时,求相应的自变量的值 从图象上看,这相当于已知直线y=kx+b确定它与x轴交点的横坐标值-
限制150内