《人教版七年级数学一元一次方程应用题复习题及答案(1).doc》由会员分享,可在线阅读,更多相关《人教版七年级数学一元一次方程应用题复习题及答案(1).doc(83页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、Four short words sum up what has lifted most successful individuals above the crowd: a little bit more.-author-date人教版七年级数学一元一次方程应用题复习题及答案(1)一元一次方程应用题知能点1:市场经济、打折销售问题(1)商品利润商品售价商品成本价 (2)商品利润率100%(3)商品销售额商品销售价商品销售量(4)商品的销售利润(销售价成本价)销售量(5)商品打几折出售,就是按原价的 百分之几十 出售,如商品打8折出售,即按原价的80%出售1. 某商店开张,为了吸引顾客,所有商品
2、一律按八折优惠出售,已知某种皮鞋进价60元一双,八折出售后商家获利润率为40%,问这种皮鞋标价是多少元?优惠价是多少元? 2. 一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?3.一家商店将一种自行车按进价提高45%后标价,又以八折优惠卖出,结果每辆仍获利50元,这种自行车每辆的进价是多少元?若设这种自行车每辆的进价是x元,那么所列方程为( )A.45%(1+80%)x-x=50 B. 80%(1+45%)x - x = 50C. x-80%(1+45%)x = 50 D.80%(1-45%)x - x = 504某商品的进价为800
3、元,出售时标价为1200元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多打几折5一家商店将某种型号的彩电先按原售价提高40%,然后在广告中写上“大酬宾,八折优惠”经顾客投拆后,拆法部门按已得非法收入的10倍处以每台2700元的罚款,求每台彩电的原售价知能点2: 方案选择问题6某蔬菜公司的一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元,经粗加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元,当地一家公司收购这种蔬菜140吨,该公司的加工生产能力是: 如果对蔬菜进行粗加工,每天可加工16吨,如果进行精加工,每天可加工6吨,但两种加工方式不能
4、同时进行,受季度等条件限制,公司必须在15天将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案: 方案一:将蔬菜全部进行粗加工 方案二:尽可能多地对蔬菜进行精加工,没来得及进行加工的蔬菜,在市场上直接销售 方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成你认为哪种方案获利最多?为什么?7某市移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50元月基础费,然后每通话1分钟,再付电话费0.2元;“神州行”不缴月基础费,每通话1分钟需付话费0.4元(这里均指市内电话)若一个月内通话x分钟,两种通话方式的费用分别为y1元和y2元 (1)写出y1,y2与x之间的函数关系式(即
5、等式) (2)一个月内通话多少分钟,两种通话方式的费用相同? (3)若某人预计一个月内使用话费120元,则应选择哪一种通话方式较合算?8 某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦时,则超过部分按基本电价的70%收费。(1)某户八月份用电84千瓦时,共交电费30.72元,求a(2)若该用户九月份的平均电费为0.36元,则九月份共用电多少千瓦时?应交电费是多少元?9某家电商场计划用9万元从生产厂家购进50台电视机已知该厂家生产3种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2100元,C种每台2500元 (1)若家电商场同时购进两种不同型号的电视机共50
6、台,用去9万元,请你研究一下商场的进货方案 (2)若商场销售一台A种电视机可获利150元,销售一台B种电视机可获利200元,销售一台C种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?10.小刚为书房买灯。现有两种灯可供选购,其中一种是9瓦的节能灯,售价为49元/盏,另一种是40瓦的白炽灯,售价为18元/盏。假设两种灯的照明效果一样,使用寿命都可以达到2800小时。已知小刚家所在地的电价是每千瓦时0.5元。(1).设照明时间是x小时,请用含x的代数式分别表示用一盏节能灯和用一盏白炽灯的费用。(费用=灯的售价+电费) (2).小刚想在这种灯中选购
7、两盏。假定照明时间是3000小时,使用寿命都是2800小时。请你设计一种费用最低的选灯照明方案,并说明理由。知能点3储蓄、储蓄利息问题(1)顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率。利息的20%付利息税(2)利息=本金利率期数 本息和=本金+利息 利息税=利息税率(20%)(3)11. 某同学把250元钱存入银行,整存整取,存期为半年。半年后共得本息和252.7元,求银行半年期的年利率是多少?(不计利息税)12. 为了准备6年后小明上大学的学费20000元,他的父亲现在就参加了教育储蓄,下面有三种教育储蓄方式:(1
8、)直接存入一个6年期;(2)先存入一个三年期,3年后将本息和自动转存一个三年期;(3)先存入一个一年期的,后将本息和自动转存下一个一年期;你认为哪种教育储蓄方式开始存入的本金比较少?一年2.25三年2.70六年2.8813小刚的爸爸前年买了某公司的二年期债券4500元,今年到期,扣除利息税后,共得本利和约4700元,问这种债券的年利率是多少(精确到0.01%)14(北京海淀区)白云商场购进某种商品的进价是每件8元,销售价是每件10元(销售价与进价的差价2元就是卖出一件商品所获得的利润)现为了扩大销售量,把每件的销售价降低x%出售,但要求卖出一件商品所获得的利润是降价前所获得的利润的90%,则x
9、应等于( )A1 B1.8 C2 D1015.用若干元人民币购买了一种年利率为10% 的一年期债券,到期后他取出本金的一半用作购物,剩下的一半和所得的利息又全部买了这种一年期债券(利率不变),到期后得本息和1320元。问张叔叔当初购买这咱债券花了多少元?知能点4:工程问题 工作量工作效率工作时间 工作效率工作量工作时间 工作时间工作量工作效率 完成某项任务的各工作量的和总工作量116. 一件工作,甲独作10天完成,乙独作8天完成,两人合作几天完成? 17. 一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程
10、? 18. 一个蓄水池有甲、乙两个进水管和一个丙排水管,单独开甲管6小时可注满水池;单独开乙管8小时可注满水池,单独开丙管9小时可将满池水排空,若先将甲、乙管同时开放2小时,然后打开丙管,问打开丙管后几小时可注满水池? 19.一批工业最新动态信息输入管理储存网络,甲独做需6小时,乙独做需4小时,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需多少小时才能完成工作?20. 某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元若此车间一共获利1440元,求这一天有
11、几个工人加工甲种零件21.一项工程甲单独做需要10天,乙需要12天,丙单独做需要15天,甲、丙先做3天后,甲因事离去,乙参与工作,问还需几天完成?知能点5:若干应用问题等量关系的规律 (1)和、差、倍、分问题 此类题既可有示运算关系,又可表示相等关系,要结合题意特别注意题目中的关键词语的含义,如相等、和差、几倍、几分之几、多、少、快、慢等,它们能指导我们正确地列出代数式或方程式。 增长量原有量增长率 现在量原有量增长量 (2)等积变形问题 常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变 圆柱体的体积公式 V=底面积高Shr2h长方体的体积 V长宽高abc22. 某粮库装粮食,第
12、一个仓库是第二个仓库存粮的3倍,如果从第一个仓库中取出20吨放入第二个仓库中,第二个仓库中的粮食是第一个中的。问每个仓库各有多少粮食?23. 一个装满水的内部长、宽、高分别为300毫米,300毫米和80毫米的长方体铁盒中的水,倒入一个内径为200毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高(精确到0.1毫米,3.14)24. 长方体甲的长、宽、高分别为260mm,150mm,325mm,长方体乙的底面积为130130mm2,又知甲的体积是乙的体积的2.5倍,求乙的高?知能点6:行程问题 基本量之间的关系: 路程速度时间 时间路程速度 速度路程时间 (1)相遇问题 (2)追及问题 快行距慢行距
13、原距 快行距慢行距原距 (3)航行问题 顺水(风)速度静水(风)速度水流(风)速度 逆水(风)速度静水(风)速度水流(风)速度 抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系25. 甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。 (1)慢车先开出1小时,快车再开。两车相向而行。问快车开出多少小时后两车相遇? (2)两车同时开出,相背而行多少小时后两车相距600公里? (3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里? (4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?
14、 (5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车? 此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。故可结合图形分析。 26. 甲乙两人在同一道路上从相距5千米的A、B两地同向而行,甲的速度为5千米/小时,乙的速度为3千米/小时,甲带着一只狗,当甲追乙时,狗先追上乙,再返回遇上甲,再返回追上乙,依次反复,直至甲追上乙为止,已知狗的速度为15千米/小时,求此过程中,狗跑的总路程是多少?27. 某船从A地顺流而下到达B地,然后逆流返回,到达A、B两地之间的C地,一共航行了7小时,已知此船在静水中的速度为8千米/时,水流速度为2千米/时。A、C两地之间的路
15、程为10千米,求A、B两地之间的路程。 28有一火车以每分钟600米的速度要过完第一、第二两座铁桥,过第二铁桥比过第一铁桥需多5秒,又知第二铁桥的长度比第一铁桥长度的2倍短50米,试求各铁桥的长 29 已知甲、乙两地相距120千米,乙的速度比甲每小时快1千米,甲先从A地出发2小时后,乙从B地出发,与甲相向而行经过10小时后相遇,求甲乙的速度?30一队学生去军事训练,走到半路,队长有事要从队头通知到队尾,通讯员以18米/分的速度从队头至队尾又返回,已知队伍的行进速度为14米/分。问:若已知队长320米,则通讯员几分钟返回?若已知通讯员用了25分钟,则队长为多少米?31一架飞机在两个城市之间飞行,
16、风速为24千米/小时,顺风飞行需要2小时50分,逆风飞行需要3小时,求两个城市之间的飞行路程?32一轮船在甲、乙两码头之间航行,顺水航行需要4小时,逆水航行需要5小时,水流的速度为2千米/时,求甲、乙两码头之间的距离。知能点7:数字问题(1)要搞清楚数的表示方法:一个三位数的百位数字为a,十位数字是b,个位数字为c(其中a、b、c均为整数,且1a9, 0b9, 0c9)则这个三位数表示为:100a+10b+c。然后抓住数字间或新数、原数之间的关系找等量关系列方程(2)数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n表示,连续的偶数用2n+2或2n2表示;奇数用2n+1
17、或2n1表示。33. 一个三位数,三个数位上的数字之和是17,百位上的数比十位上的数大7,个位上的数是十位上的数的3倍,求这个三位数.34. 一个两位数,个位上的数是十位上的数的2倍,如果把十位与个位上的数对调,那么所得的两位数比原两位数大36,求原来的两位数注意:虽然我们分了几种类型对应用题进行了研究,但实际生活中的问题是千变万化的,远不止这几类问题。因此我们要想学好列方程解应用题,就要学会观察事物,关心日常生产生活中的各种问题,如市场经济问题等等,要会具体情况具体分析,灵活运用所学知识,认真审题,适当设元,寻找等量关系,从而列出方程,解出方程,使问题得解1. 分析通过列表分析已知条件,找到
18、等量关系式进价折扣率标价优惠价利润率60元8折X元80%X40%等量关系:商品利润率=商品利润/商品进价 解:设标价是X元,解之:x=105 优惠价为2. 分析探究题目中隐含的条件是关键,可直接设出成本为X元进价折扣率标价优惠价利润X元8折(1+40%)X元80%(1+40%)X15元等量关系:(利润=折扣后价格进价)折扣后价格进价=15解:设进价为X元,80%X(1+40%)X=15,X=125答:进价是125元。3.B4解:设至多打x折,根据题意有100%=5% 解得x=0.7=70% 答:至多打7折出售5解:设每台彩电的原售价为x元,根据题意,有 10x(1+40%)80%-x=2700
19、,x=2250答:每台彩电的原售价为2250元6.解:方案一:获利1404500=630000(元) 方案二:获利1567500+(140-156)1000=725000(元) 方案三:设精加工x吨,则粗加工(140-x)吨 依题意得=15 解得x=60 获利607500+(140-60)4500=810000(元) 因为第三种获利最多,所以应选择方案三7.解:(1)y1=0.2x+50,y2=0.4x (2)由y1=y2得0.2x+50=0.4x,解得x=250 即当一个月内通话250分钟时,两种通话方式的费用相同 (3)由0.2x+50=120,解得x=350 由0.4x+50=120,得
20、x=300 因为350300 故第一种通话方式比较合算8.解:(1)由题意,得 0.4a+(84-a)0.4070%=30.72 解得a=60 (2)设九月份共用电x千瓦时,则 0.4060+(x-60)0.4070%=0.36x 解得x=90 所以0.3690=32.40(元) 答:九月份共用电90千瓦时,应交电费32.40元9解:按购A,B两种,B,C两种,A,C两种电视机这三种方案分别计算,设购A种电视机x台,则B种电视机y台 (1)当选购A,B两种电视机时,B种电视机购(50-x)台,可得方程 1500x+2100(50-x)=90000 即5x+7(50-x)=300 2x=50 x
21、=25 50-x=25当选购A,C两种电视机时,C种电视机购(50-x)台,可得方程1500x+2500(50-x)=90000 3x+5(50-x)=1800 x=35 50-x=15 当购B,C两种电视机时,C种电视机为(50-y)台 可得方程2100y+2500(50-y)=90000 21y+25(50-y)=900,4y=350,不合题意 由此可选择两种方案:一是购A,B两种电视机25台;二是购A种电视机35台,C种电视机15台 (2)若选择(1)中的方案,可获利 15025+25015=8750(元) 若选择(1)中的方案,可获利 15035+25015=9000(元) 90008
22、750 故为了获利最多,选择第二种方案10. 答案:0.005x+49 2000 11.分析等量关系:本息和=本金(1+利率)解:设半年期的实际利率为X,依题意得方程250(1+X)=252.7, 解得X=0.0108所以年利率为0.01082=0.0216 答:银行的年利率是2.16%为了准备6年后小明上大学的学费20000元,他的父亲现在就参加了教育储蓄,下面有三种教育储蓄方式:(1)直接存入一个6年期;(2)先存入一个三年期,3年后将本息和自动转存一个三年期;(3)先存入一个一年期的,后将本息和自动转存下一个一年期;你认为哪种教育储蓄方式开始存入的本金比较少?一年2.25三年2.70六年
23、2.8812. 分析这种比较几种方案哪种合理的题目,我们可以分别计算出每种教育储蓄的本金是多少,再进行比较。解:(1)设存入一个6年的本金是X元,依题意得方程X(1+62.88%)=20000,解得X=17053(2)设存入两个三年期开始的本金为Y元,Y(1+2.7%3)(1+2.7%3)=20000,X=17115(3)设存入一年期本金为Z元 ,Z(1+2.25%)6=20000,Z=17894所以存入一个6年期的本金最少。13解:设这种债券的年利率是x,根据题意有 4500+45002x(1-20%)=4700, 解得x=0.03 答:这种债券的年利率为314C 点拨:根据题意列方程,得(
24、10-8)90%=10(1-x%)-8,解得x=2,故选C15. 22000元 16. 分析甲独作10天完成,说明的他的工作效率是乙的工作效率是等量关系是:甲乙合作的效率合作的时间=1解:设合作X天完成, 依题意得方程 答:两人合作天完成 17. 分析设工程总量为单位1,等量关系为:甲完成工作量+乙完成工作量=工作总量。 解:设乙还需x天完成全部工程,设工作总量为单位1,由题意得,答:乙还需天才能完成全部工程。18. 分析等量关系为:甲注水量+乙注水量-丙排水量=1。 解:设打开丙管后x小时可注满水池, 由题意得, 答:打开丙管后小时可注满水池。 19.解:设甲、乙一起做还需x小时才能完成工作
25、 根据题意,得+(+)x=1 解这个方程,得x= =2小时12分 答:甲、乙一起做还需2小时12分才能完成工作20.解:设这一天有x名工人加工甲种零件,则这天加工甲种零件有5x个,乙种零件有4(16-x)个 根据题意,得165x+244(16-x)=1440 解得x=6答:这一天有6名工人加工甲种零件21. 设还需x天。22.设第二个仓库存粮23.解:设圆柱形水桶的高为x毫米,依题意,得 ()2x=30030080 x229.3答:圆柱形水桶的高约为229.3毫米24.设乙的高为25. (1)分析:相遇问题,画图表示为: 等量关系是:慢车走的路程+快车走的路程=480公里。解:设快车开出x小时
26、后两车相遇,由题意得,140x+90(x+1)=480 解这个方程,230x=390答:快车开出小时两车相遇分析:相背而行,画图表示为:等量关系是:两车所走的路程和+480公里=600公里。 解:设x小时后两车相距600公里,由题意得,(140+90)x+480=600解这个方程,230x=120 x= 答:小时后两车相距600公里。 (3)分析:等量关系为:快车所走路程慢车所走路程+480公里=600公里。 解:设x小时后两车相距600公里,由题意得,(14090)x+480=600 50x=120 答:2.4小时后两车相距600公里。 分析:追及问题,画图表示为:等量关系为:快车的路程=慢
27、车走的路程+480公里。 解:设x小时后快车追上慢车。 由题意得,140x=90x+480 解这个方程,50x=480 答:9.6小时后快车追上慢车。分析:追及问题,等量关系为:快车的路程=慢车走的路程+480公里。解:设快车开出x小时后追上慢车。由题意得,140x=90(x+1)+480 50x=570 x=11.4 答:快车开出11.4小时后追上慢车。 26. 分析追击问题,不能直接求出狗的总路程,但间接的问题转化成甲乙两人的追击问题。狗跑的总路程=它的速度时间,而它用的总时间就是甲追上乙的时间解:设甲用X小时追上乙,根据题意列方程 5X=3X+5 解得X=2.5,狗的总路程:152.5=
28、37.5答:狗的总路程是37.5千米。27. 分析这属于行船问题,这类问题中要弄清:(1)顺水速度=船在静水中的速度+水流速度;(2)逆水速度=船在静水中的速度水流速度。相等关系为:顺流航行的时间+逆流航行的时间=7小时。 解:设A、B两码头之间的航程为x千米,则B、C间的航程为(x-10)千米, 由题意得, 答:A、B两地之间的路程为32.5千米。 28解:设第一铁桥的长为x米,那么第二铁桥的长为(2x-50)米,过完第一铁桥所需的时间为分过完第二铁桥所需的时间为分依题意,可列出方程 += 解方程x+50=2x-50 得x=100 2x-50=2100-50=150 答:第一铁桥长100米,
29、第二铁桥长150米29设甲的速度为x千米/小时。 则 30(1)设通讯员x分钟返回.则 x=90(2)设队长为x米。则 31设两个城市之间的飞行路程为x千米。则 32设甲、乙两码头之间的距离为x千米。则。 x=8033.分析由已知条件给出了百位和个位上的数的关系,若设十位上的数为x,则百位上的数为x+7,个位上的数是3x,等量关系为三个数位上的数字和为17。解:设这个三位数十位上的数为X,则百位上的数为x+7,个位上的数是3xx+x+7+3x=17 解得x=2x+7=9,3x=6 答:这个三位数是926 一元一次方程应用题1列一元一次方程解应用题的一般步骤 (1)审题:弄清题意(2)找出等量关
30、系:找出能够表示本题含义的相等关系(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程(4)解方程:解所列的方程,求出未知数的值(5)检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案2.和差倍分问题增长量原有量增长率 现在量原有量增长量3.等积变形问题 常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变 圆柱体的体积公式 V=底面积高Shr2h 长方体的体积 V长宽高abc4数字问题 一般可设个位数字为a,十位数字为b,百位数字为c 十位数可表示为10b+a, 百位数可表示为100c+10b+a 然后抓
31、住数字间或新数、原数之间的关系找等量关系列方程5市场经济问题 (1)商品利润商品售价商品成本价 (2)商品利润率100% (3)商品销售额商品销售价商品销售量 (4)商品的销售利润(销售价成本价)销售量 (5)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售6行程问题:路程速度时间 时间路程速度 速度路程时间 (1)相遇问题: 快行距慢行距原距 (2)追及问题: 快行距慢行距原距 (3)航行问题:顺水(风)速度静水(风)速度水流(风)速度 逆水(风)速度静水(风)速度水流(风)速度 抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系7工程问
32、题:工作量工作效率工作时间 完成某项任务的各工作量的和总工作量18储蓄问题 利润100% 利息本金利率期数1将一批工业最新动态信息输入管理储存网络,甲独做需6小时,乙独做需4小时,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需多少小时才能完成工作?2兄弟二人今年分别为15岁和9岁,多少年后兄的年龄是弟的年龄的2倍?3将一个装满水的内部长、宽、高分别为300毫米,300毫米和80毫米的长方体铁盒中的水,倒入一个内径为200毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高(精确到0.1毫米,3.14)4有一火车以每分钟600米的速度要过完第一、第二两座铁桥,过第二铁桥比过第一铁桥需多5秒,又知
33、第二铁桥的长度比第一铁桥长度的2倍短50米,试求各铁桥的长5有某种三色冰淇淋50克,咖啡色、红色和白色配料的比是2:3:5,这种三色冰淇淋中咖啡色、红色和白色配料分别是多少克?6某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元若此车间一共获利1440元,求这一天有几个工人加工甲种零件7某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦时,则超过部分按基本电价的70%收费 (1)某户八月份用电84千瓦时,共交电费30.72元,求a(2)若该用
34、户九月份的平均电费为0.36元,则九月份共用电多少千瓦?应交电费是多少元?8某家电商场计划用9万元从生产厂家购进50台电视机已知该厂家生产3种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2100元,C种每台2500元 (1)若家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案 (2)若商场销售一台A种电视机可获利150元,销售一台B种电视机可获利200元,销售一台C种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?1解:设甲、乙一起做还需x小时才能完成工作 根据题意,得+(+)x=1 解这个方程,
35、得x= =2小时12分 答:甲、乙一起做还需2小时12分才能完成工作2解:设x年后,兄的年龄是弟的年龄的2倍,则x年后兄的年龄是15+x,弟的年龄是9+x 由题意,得2(9+x)=15+x 18+2x=15+x,2x-x=15-18 x=-3 答:3年前兄的年龄是弟的年龄的2倍 (点拨:-3年的意义,并不是没有意义,而是指以今年为起点前的3年,是与3年后具有相反意义的量)3解:设圆柱形水桶的高为x毫米,依题意,得()2x=30030080 x229.3 答:圆柱形水桶的高约为229.3毫米4解:设第一铁桥的长为x米,那么第二铁桥的长为(2x-50)米,过完第一铁桥所需的时间为分 过完第二铁桥所
36、需的时间为分 依题意,可列出方程 += 解方程x+50=2x-50 得x=100 2x-50=2100-50=150 答:第一铁桥长100米,第二铁桥长150米5解:设这种三色冰淇淋中咖啡色配料为2x克,那么红色和白色配料分别为3x克和5x克 根据题意,得2x+3x+5x=50 解这个方程,得x=5 于是2x=10,3x=15,5x=25 答:这种三色冰淇淋中咖啡色、红色和白色配料分别是10克,15克和25克6解:设这一天有x名工人加工甲种零件,则这天加工甲种零件有5x个,乙种零件有4(16-x)个 根据题意,得165x+244(16-x)=1440 解得x=6 答:这一天有6名工人加工甲种零
37、件7解:(1)由题意,得 0.4a+(84-a)0.4070%=30.72 解得a=60 (2)设九月份共用电x千瓦时,则 0.4060+(x-60)0.4070%=0.36x 解得x=90 所以0.3690=32.40(元) 答:九月份共用电90千瓦时,应交电费32.40元8解:按购A,B两种,B,C两种,A,C两种电视机这三种方案分别计算,设购A种电视机x台,则B种电视机y台 (1)当选购A,B两种电视机时,B种电视机购(50-x)台,可得方程 1500x+2100(50-x)=90000 即5x+7(50-x)=300 2x=50 x=25 50-x=25当选购A,C两种电视机时,C种电视机购(50-x)台,可得方程1500x+2500(50-x)=90000 3x+5(50-x)=1800 x=35 50-x=15 当购B,C两种电视机时,C种电视机为(50-y)台 可得方程2100y+2500(50-y)=90000 21y+25(50-y)=900,4y=350,不合题意 由此可选择两种方案:一是购A,B两种电视机25台;二是购A种电视机35台,C种电视机15台 (2)若选择(1)中的方案,可获利 15025+25015=8750(元) 若选择(1)中的方案,可获利 15035+25015=9000(元) 90008750 故为了获利最多,选择第二种方案-
限制150内