倍长中线与截长补短.doc
《倍长中线与截长补短.doc》由会员分享,可在线阅读,更多相关《倍长中线与截长补短.doc(65页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、Four short words sum up what has lifted most successful individuals above the crowd: a little bit more.-author-date倍长中线与截长补短倍长中线与截长补短倍长中线与截长补短 题型一:倍长中线定 义示例剖析倍长中线:即延长三角形的中线,使得延长后的线段是原中线的两倍其目的是构造一对对顶的全等三角形;其本质是转移边和角其中,延长使得,则例题精讲【例1】 已知中,平分,且,求证:【解析】 延长到,使,连接则,平分,【教师备选】教师可借用例1对等腰三角形三线合一性质的逆命题进行简单归纳:已知
2、角平分线+中线证等腰三角形,如例1;已知角平分线+高证等腰三角形,如拓展1;已知中线+高证等腰三角形,如拓展2【拓展1】已知ABC中,AD平分BAC,且ADBC,求证:AB=AC 【解析】AD平分BAC,BAD=CADADBC,ADB=ADC=90ABD ACD (SAS)AB=AC【拓展2】已知ABC中,ADBC,且,求证:AB=AC【解析】ADBC,且AD所在直线是线段BC的垂直平分线根据垂直平分线上的点到线段两端点距离相等故AB=AC典题精练【例2】 如图,已知中,是边上的中线,延长到,使给出下列结论:AD=2AC;CD=2CE;ACE=BCD;CB平分DCE,则以上结论正确的是 【解析
3、】 正确,AD=2AC、正确延长到,使,连接是的中线,在和中,在和中,FCB=DCB即CD=2CE,CB平分DCE错误FCB=DCB,而CE是AB边上中线而不是ACB的角平分线故ACE和BCD不一定相等如图,在ABC中,点D、E为边BC的三等分点,给出下列结论:BD=DE=EC;AB+AE2AD;AD+AC2AE;AB+ACAD+AE,则以上结论正确的是 【解析】 点D、E为边BC的三等分点,BD=DE=CE延长AD至点M,AE至点N,使得DM=AD,EN=AE,连接EM、CN,则可证明ABDMED,进而可得AB+AE2AD,再证明ADENCE,进而可得AD+AC2AE,将两式相加可得到AB+
4、AE+AD+AC2AD+2AE,即AB+ACAD+AE均正确【例3】 如图,已知在中,是边上的中线,是上一点,延长交于,求证:【解析】 延长到,使,连接,又,【例4】 在正方形ABCD中,PQBD于P,M为QD的中点,试探究MP与MC的关系【解析】 延长PM至点N,使PM=MN,连结CP、CN、DN易证PMQNMD,PB=PQ=DN,PQD=NDMPQDN,又BPQ=BDN= 90PBQ=BDC=NDC=45再证BPC DNC (SAS)易证PCN为等腰直角三角形,又PM=MN,PMMC,且PM=CM题型二:截长补短思路导航定 义示例剖析截长:即在一条较长的线段上截取一段较短的线段在线段上截取
5、补短:即在较短的线段上补一段线段使其和较长的线段相等延长,使得例题精讲【例5】 在中,的平分线交于,求的大小 【解析】 在上截取,连接,典题精练【例6】 如图,在中,的平分线交于点求证: 【解析】方法一:(截长)在上截取,连接在和中,又, 方法二:(补短)延长到点使得,连接在和中,又,方法三:(补短)延长到点使得,连接则有,又, , AB+BD=AC 若题目条件或求证结论中含有“”的条件,需要添加辅助线时多考虑“截长补短”. 建议教师此题把3种解法都讲一下,方便学生更加深刻理解这种辅助线添加方法.【例7】 已知:在中,求证:【解析】 方法一:在上取一点,使,如图1,在和中,又, 方法二:延长到
6、点,使,如图2,在和中,【探究对象】截长补短法是几何证明题中十分重要的方法,通常来证明几条线段的数量关系,常见做辅助线方法有:截长法:过某一点作长边的垂线;在长边上截取一条与某一短边相同的线段,再证剩下的线段与另一短边相等。补短法:延长短边。通过旋转等方式使两短边拼合到一起,证与长边相等。【变式一】正方形ABCD中,点E在CD上,点F在BC上,EAF=45,求证:EF=DE+BF【解析】 延长CD到点G,使得DG=BF,连接AG由四边形ABCD是正方形得:ADG=ABF=90,AD=AB又DG=BFADG ABF(SAS)GAD=FAB,AG=AF由四边形ABCD是正方形得DAB=90=DAF
7、+FAB=DAF+GAD=GAFGAE=GAFEAF=9045=45GAE=FAE=45又AG=AF,AE=AEEAG EAF(SAS)EF=GE=GD+DE=BF+DE【变式二】正方形ABCD中,点E在CD延长线上,点F在BC延长线上,EAF=45,请问现在EF、DE、BF又有什么数量关系?【解析】 数量关系为:EF=BFDE理由如下:在BC上截取BG,使得BG=DF,连接AG由四边形ABCD是正方形得ADE=ABG=90,AD=AB又DE=BGADE ABG(SAS)EAD=GAB,AE=AG由四边形ABCD是正方形得DAB=90=DAG+GAB=DAG+EAD=GAEGAF=GAEEAF
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中线 截长补短
限制150内