高考文科数学刷题练习考点十四空间中的平行与垂直关系.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《高考文科数学刷题练习考点十四空间中的平行与垂直关系.doc》由会员分享,可在线阅读,更多相关《高考文科数学刷题练习考点十四空间中的平行与垂直关系.doc(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、考点十四空间中的平行与垂直关系一、选择题1已知平面平面,若两条直线m,n分别在平面,内,则m,n的关系不可能是()A平行 B相交 C异面 D平行或异面答案B解析由知,.又m,n,故mn.故选B.2设直线m与平面相交但不垂直,则下列说法正确的是()A在平面内有且只有一条直线与直线m垂直B过直线m有且只有一个平面与平面垂直C与直线m垂直的直线不可能与平面平行D与直线m平行的平面不可能与平面垂直答案B解析可以通过观察正方体ABCDA1B1C1D1进行判断,取BC1为直线m,平面ABCD为平面,由AB,CD均与m垂直知,A错误;由D1C1与m垂直且与平面平行知,C错误;由平面ADD1A1与m平行且与平
2、面垂直知,D错误故选B.3(2019东北三省四市一模)已知m,n为两条不重合直线,为两个不重合平面,下列条件中,一定能推出的是()Amn,m,n Bmn,m,nCmn,m,n Dmn,m,n答案B解析当mn时,若m,可得n.又n,可知,故选B.4(2019湖南长沙一中模拟一)在正方体ABCDA1B1C1D1中,点O是四边形ABCD的中心,关于直线A1O,下列说法正确的是()AA1ODC BA1OBCCA1O平面B1CD1 DA1O平面ABD答案C解析显然A1O与DC是异面直线,故A错误;假设A1OBC,结合A1ABC可得BC平面A1ACC1,则可得BCAC,显然不正确,故假设错误,即B错误;在
3、正方体ABCDA1B1C1D1中,点O是四边形ABCD的中心,A1DB1C,ODB1D1,A1DDOD,B1D1B1CB1,平面A1DO平面B1CD1,A1O平面A1DO,A1O平面B1CD1,故C正确;又A1A平面ABD,过一点作平面ABD的垂线有且只有一条,则D错误,故选C.5下列命题中错误的是()A如果平面平面,那么平面内一定存在直线平行于平面B如果平面不垂直于平面,那么平面内一定不存在直线垂直于平面C如果平面平面,平面平面,l,那么l平面D如果平面平面,那么平面内所有直线都垂直于平面答案D解析对于D,若平面平面,则平面内的直线可能不垂直于平面,甚至可能平行于平面,其余选项均是正确的6(
4、2019河南名校联盟2月联考)设点P是正方体ABCDA1B1C1D1的对角线BD1的中点,平面过点P,且与直线BD1垂直,平面平面ABCDm,则m与A1C所成角的余弦值为()A. B. C. D.答案B解析由题意知,点P是正方体ABCDA1B1C1D1的对角线BD1的中点,平面过点P,且与直线BD1垂直,平面平面ABCDm,根据面面平行的性质,可得mAC,所以直线m与A1C所成的角即为直线AC与直线A1C所成的角,即ACA1为直线m与A1C所成的角,在RtACA1中,cosACA1,即m与A1C所成角的余弦值为,故选B.7(2017全国卷)如图,在下列四个正方体中,A,B为正方体的两个顶点,M
5、,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()答案A解析A项,作如图所示的辅助线,其中D为BC的中点,则QDAB.QD平面MNQQ,QD与平面MNQ相交,直线AB与平面MNQ相交B项,作如图所示的辅助线,则ABCD,CDMQ,ABMQ.又AB平面MNQ,MQ平面MNQ,AB平面MNQ.C项,作如图所示的辅助线,则ABCD,CDMQ,ABMQ.又AB平面MNQ,MQ平面MNQ,AB平面MNQ.D项,作如图所示的辅助线,则ABCD,CDNQ,ABNQ.又AB平面MNQ,NQ平面MNQ,AB平面MNQ.故选A.8如图,在四边形ABCD中,ADBC,ADAB,BCD45
6、,BAD90.将ADB沿BD折起,使平面ABD平面BCD,构成三棱锥ABCD,则在三棱锥ABCD中,下列命题正确的是()A平面ABD平面ABC B平面ADC平面BDCC平面ABC平面BDC D平面ADC平面ABC答案D解析因为在四边形ABCD中,ADBC,ADAB,BCD45,BAD90,所以BDCD,又平面ABD平面BCD,且平面ABD平面BCDBD,所以CD平面ABD,则CDAB,又ADAB,所以AB平面ADC,则平面ABC平面ADC,故选D.二、填空题9已知正方体ABCDA1B1C1D1的棱长为2,点P是平面AA1D1D的中心,点Q是B1D1上一点,且PQ平面AA1B1B,则线段PQ的长
7、为_答案解析如图,PQ平面AA1B1B,PQ平面AD1B1,AB1平面AA1B1B平面AD1B1,PQAB1,点P是平面AA1D1D的中心,点P是AD1的中点,点Q是B1D1的中点,PQAB1.10(2019黑龙江大庆一中四模)给出下列四个命题:如果平面外一条直线a与平面内一条直线b平行,那么a;过空间一定点有且只有一条直线与已知平面垂直;如果一条直线垂直于一个平面内的无数条直线,那么这条直线与这个平面垂直;若两个相交平面都垂直于第三个平面,则这两个平面的交线垂直于第三个平面其中真命题的序号为_答案解析命题是线面平行的判定定理,正确;命题因为垂直同一平面的两条直线平行,所以过空间一定点有且只有
8、一条直线与已知平面垂直,故正确;命题平面内无数条直线均平行时,不能得出直线与这个平面垂直,故不正确;命题因为两个相交平面都垂直于第三个平面,从而交线垂直于第三个平面,故正确故答案为.11. 如图,在正三棱柱ABCA1B1C1中,已知AB1,点D在棱BB1上,且BD1,则AD与平面AA1C1C所成角的正弦值为_答案解析如图,取C1A1,CA的中点E,F,连接B1E,BF,EF,则B1E平面CAA1C1.过点D作DHB1E,则DH平面CAA1C1.连接AH,则DAH为AD与平面AA1C1C所成角DHB1E,DA,所以sinDAH.12(2019全国卷)已知ACB90,P为平面ABC外一点,PC2,
9、点P到ACB两边AC,BC的距离均为,那么P到平面ABC的距离为_答案解析如图,过点P作PO平面ABC于O,则PO为P到平面ABC的距离再过O作OEAC于E,OFBC于F,连接PC,PE,PF,则PEAC,PFBC.又PEPF,所以OEOF,所以CO为ACB的平分线,即ACO45.在RtPEC中,PC2,PE,所以CE1,所以OE1,所以PO.三、解答题13(2019安徽黄山第三次质量检测)如图,在平行四边形ABCM中,ABAC3,ACM90,以AC为折痕将ACM折起,使点M到达点D的位置,且ABDA.(1)证明:CD平面ABC;(2)Q为线段AD上一点,P为线段BC上一点,且BPDQDA,求
10、三棱锥BAPQ的体积解(1)证明:四边形ABCM是平行四边形,且ACM90,ACAB,又ADAB,AB平面ACD,CD平面ACD,ABCD,又CDAC,CD平面ABC.(2)取AC上一点H,使CHCA,DQDA,连接QH,则QHCD,由(1)可得QH平面ABC,ABAC3,BC3,AD3,BPDQ32,QHCD31,ACAB3,ACAB,ABC为等腰直角三角形,ABP45,SPABABBPsin453,VBAPQVQAPBSPABQH1.14(2019全国卷)如图,直四棱柱ABCDA1B1C1D1的底面是菱形,AA14,AB2,BAD60,E,M,N分别是BC,BB1,A1D的中点(1)证明:
11、MN平面C1DE;(2)求点C到平面C1DE的距离解(1)证明:如图,连接B1C,ME.因为M,E分别为BB1,BC的中点,所以MEB1C,且MEB1C.又因为N为A1D的中点,所以NDA1D.由题设知A1B1綊DC,可得B1C綊A1D,故ME綊ND,因此四边形MNDE为平行四边形,所以MNED.又MN平面C1DE,所以MN平面C1DE.(2)解法一:过点C作C1E的垂线,垂足为H.由已知可得DEBC,DEC1C,所以DE平面C1CE,故DECH.从而CH平面C1DE,故CH的长即为点C到平面C1DE的距离由已知可得CE1,C1C4,所以C1E,故CH.从而点C到平面C1DE的距离为.解法二:
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考 文科 数学 练习 考点 十四 空间 中的 平行 垂直 关系
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内