高考文科数学专题复习冲刺方案专题七坐标系与参数方程.doc
《高考文科数学专题复习冲刺方案专题七坐标系与参数方程.doc》由会员分享,可在线阅读,更多相关《高考文科数学专题复习冲刺方案专题七坐标系与参数方程.doc(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、专题七 选修4系列第1讲坐标系与参数方程考情研析高考中,该部分内容常以直线、圆锥曲线(主要是圆、椭圆)几何元素为载体,主要考查参数方程与普通方程互化、极坐标方程与直角坐标方程互化;同时进一步考查利用相应方程形式或几何意义解决元素位置关系、距离、面积等综合问题该部分试题难度一般不大.核心知识回顾1.极坐标与直角坐标的互化公式设点P的直角坐标为(x,y),极坐标为(,),则(,)(x,y)(x,y)(,)2常见圆的极坐标方程(1)圆心在极点,半径为r的圆:r(02)(2)圆心为M(a,0),半径为a的圆:2acos.(3)圆心为M,半径为a的圆:2asin(0)3常见直线的极坐标方程(1)直线过极
2、点,直线的倾斜角为:(R)(2)直线过点M(a,0),且垂直于极轴:cosa.(3)直线过点M,且平行于极轴:sina(00)在曲线C:4sin上,直线l过点A(4,0)且与OM垂直,垂足为P.(1)当0时,求0及l的极坐标方程;(2)当M在C上运动且P在线段OM上时,求P点轨迹的极坐标方程解(1)因为M(0,0)在曲线C上,当0时,04sin2.由已知得|OP|OA|cos2.设Q(,)为l上除P外的任意一点在RtOPQ中,cos|OP|2.经检验,点P在曲线cos2上,所以,l的极坐标方程为cos2.(2)设P(,),在RtOAP中,|OP|OA|cos4cos,即4cos.因为P在线段O
3、M上,且APOM,所以的取值范围是.所以,P点轨迹的极坐标方程为4cos,.直角坐标与极坐标方程的互化及应用(1)直角坐标方程化极坐标方程时,通常可以直接将xcos,ysin代入即可(2)极坐标方程化直角坐标方程时,一般需要构造2,sin,cos,常用的技巧有式子两边同乘以,两角和与差的正弦、余弦展开等(2019武汉市高三调研)在直角坐标系xOy中,以坐标原点O为极点,以x轴正半轴为极轴,建立极坐标系,曲线C1:sin,C2:2.(1)求曲线C1,C2的直角坐标方程;(2)曲线C1和C2的交点为M,N,求以MN为直径的圆与y轴的交点坐标解(1)由sin得,将代入上式得xy1.即C1的直角坐标方
4、程为xy1,同理,由2可得3x2y21,C2的直角坐标方程为3x2y21.(2)PMPN,先求以MN为直径的圆,设M(x1,y1),N(x2,y2),由得3x2(1x)21,即x2x10.则MN的中点坐标为.|MN| |x1x2|,以MN为直径的圆的方程为222,令x0,得2,即2,y0或y3,所求P点坐标为(0,0)或(0,3)考向2 参数方程及应用例2(2019四川省华文大教育联盟高三第二次质量检测)在平面直角坐标系xOy中,曲线C的参数方程为(为参数),直线l的参数方程为(t为参数)(1)求曲线C和直线l的普通方程;(2)直线l与曲线C交于A,B两点,若|AB|1,求直线l的方程解(1)
5、对曲线C:消去参数,得x2y21.对直线l:消去参数t,当cos0时,l:x2;当cos0时,l:ytan(x2)(2)把代入x2y21中,得t24tcos30.因为16cos2120,所以cos2.因为t1t24cos,t1t23,|AB|t1t2|1,所以(t1t2)2(t1t2)24t1t216cos2121,所以cos2,所以tan2.所以tan,即直线l的斜率为.所以直线l的方程为yx或yx.参数方程化为普通方程消去参数的方法(1)代入消参法:将参数解出来代入另一个方程消去参数,直线的参数方程通常用代入消参法(2)三角恒等式法:利用sin2cos21消去参数,圆的参数方程和椭圆的参数
6、方程都是运用三角恒等式法(3)常见消参数的关系式:t1;224;221.(2019太原市高三模拟)在平面直角坐标系xOy中,曲线C1的参数方程为以原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为2cos.(1)若曲线C1方程中的参数是,且C1与C2有且只有一个公共点,求C1的普通方程;(2)已知点A(0,1),若曲线C1方程中的参数是t,00,所以取得最大值2.考向3 极坐标与参数方程的综合应用角度1极坐标方程中极径几何意义的应用例3在平面直角坐标系xOy中,抛物线C的方程为x24y4.(1)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程;(2)直线l的参
7、数方程是(t为参数),l与C交于A,B两点,|AB|8,求l的斜率解(1)由xcos,ysin可得抛物线C的极坐标方程2cos24sin40.(2)在(1)中建立的极坐标系中,直线l的极坐标方程为(R),设A,B所对应的极径分别为1,2,将l的极坐标方程代入C的极坐标方程得2cos24sin40,因为cos20(否则,直线l与抛物线C没有两个公共点),于是12,12,|AB|12|,由|AB|8得cos2,tan1,所以l的斜率为1或1.(1)几何意义:极径表示极坐标平面内点M到极点O的距离(2)应用:一般应用于过极点的直线与曲线相交,所得的弦长问题,需要用极径表示出弦长,结合根与系数的关系解
8、题(2019哈尔滨市第三中学高三第一次模拟)已知曲线C1:xy和C2:(为参数)以原点O为极点,x轴的正半轴为极轴,建立极坐标系,且两种坐标系中取相同的长度单位(1)把曲线C1和C2的方程化为极坐标方程;(2)设C1与x,y轴交于M,N两点,且线段MN的中点为P.若射线OP与C1,C2交于P,Q两点,求P,Q两点间的距离解(1)因为C2的参数方程为(为参数),所以其普通方程为1,又C1:xy,所以可得C1和C2的极坐标方程分别为C1:sin,C2:2.(2)M(,0),N(0,1),P,OP的极坐标方程为,把代入sin,得11,所以点P的坐标为,把代入2,得22,所以点Q的坐标为.|PQ|21
9、|1,即P,Q两点间的距离为1.角度2直线参数方程中参数几何意义的应用例4(2019山东高三模拟)在直角坐标系xOy中,已知直线l的参数方程为(t为参数,为直线l的倾斜角),点P和F的坐标分别为(1,3)和(1,0);以坐标原点为极点,x轴的非负半轴为极轴且取相同的单位长度建立极坐标系,曲线C的极坐标方程为.(1)将曲线C的极坐标方程化为直角坐标方程;(2)设直线l与曲线C交于A,B两点,且22,求的值解(1)由,得2sin24cos,即y24x,所以曲线C的直角坐标方程为y24x.(2)将代入y24x得,t2sin2(6sin4cos)t130(sin20),由题意,得(6sin4cos)2
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考 文科 数学 专题 复习 冲刺 方案 坐标系 参数 方程
限制150内