高考文科数学专题复习方案数列.doc
《高考文科数学专题复习方案数列.doc》由会员分享,可在线阅读,更多相关《高考文科数学专题复习方案数列.doc(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第8讲数列考情分析数列为每年高考必考内容之一,考查热点主要有三个方面:(1)对等差、等比数列基本量和性质的考查,常以客观题的形式出现,考查利用通项公式、前n项和公式建立方程(组)求解,利用性质解决有关计算问题,属于中、低档题;(2)对数列通项公式的考查;(3)对数列求和及其简单应用的考查,主、客观题均会出现,常以等差、等比数列为载体,考查数列的通项、求和,难度中等热点题型分析热点1等差、等比数列的基本运算及性质1.等差(比)数列基本运算的解题策略(1)设基本量a1和公差d(公比q);(2)列、解方程(组):把条件转化为关于a1和d(q)的方程(组),然后求解,注意整体计算,以减少运算量2.等差
2、(比)数列性质问题的求解策略(1)解题关键:抓住项与项之间的关系及项的序号之间的关系,从这些特点入手选择恰当的性质进行求解;(2)牢固掌握等差(比)数列的性质,可分为三类:通项公式的变形;等差(比)中项的变形;前n项和公式的变形比如:等差数列中,“若mnpq,则amanapaq(m,n,p,qN*)”;等比数列中,“若mnpq,则amanapaq(m,n,p,qN*)”1.已知在公比不为1的等比数列an中,a2a49,且2a3为3a2和a4的等差中项,设数列an的前n项积为Tn,则T8()A.37 B310C.318 D320答案D解析由题意得a2a4a9.设等比数列an的公比为q,由2a3为
3、3a2和a4的等差中项可得4a33a2a4,即4a3a3q,整理得q24q30,由公比不为1,解得q3.所以T8a1a2a8aq28(aq16)q12(a1q2)8q12aq1294312320.故选D.2.(2019江苏高考)已知数列an(nN*)是等差数列,Sn是其前n项和若a2a5a80,S927,则S8的值是_答案16解析解法一:由S92727a1a962a562a18d6且a53.又a2a5a802a15d0,解得a15,d2.故S88a1d16.解法二:同解法一得a53.又a2a5a803a2a802a22a50a23.d2,a1a2d5.故S88a1d16.3.在等比数列an中,
4、若a7a8a9a10,a8a9,则_.答案解析由等比数列的性质可得,a7a10a8a9,.在求解数列基本量运算中,要注意公式使用时的准确性与合理性,更要注意运算的准确性如第1题要注意整体代换思想的运用,避免繁杂的运算出错;第3题易忽视等比数列性质“若mnpq,则amanapaq(m,n,p,qN*)”,而导致计算量过大.热点2求数列的通项公式1.已知Sn求an的步骤(1)先利用a1S1求出a1;(2)用n1替换Sn中的n得到一个新的关系,利用anSnSn1(n2)便可求出当n2时an的表达式;(3)注意检验n1时的表达式是否可以与n2的表达式合并2.由递推关系式求数列的通项公式(1)对于递推关
5、系式可转化为f(n)的数列,并且容易在求数列f(n)前n项的积时,采用叠乘法求数列an的通项公式;(2)对于递推关系式可转化为an1anf(n)的数列,通常采用叠加法(逐差相加法)求其通项公式;(3)对于递推关系式形如an1panq(p0,1,q0)的数列,采用构造法求数列的通项公式1.(2019长沙雅礼中学、河南实验中学联考)在数列an中,a12,ln ,则an等于()A.2nln n B2n(n1)ln nC.2nnln n D1nnln n答案C解析由题意得ln (n1)ln n,n分别用1,2,3,(n1)取代,累加得ln nln 1ln n,2ln n,an(ln n2)n,故选C.
6、2.已知数列an的前n项和为Sn,且a11,an12Sn,则数列an的通项公式为_答案an解析当n2时,an2Sn1,an1an2Sn2Sn12an,即an13an,数列an的第2项及以后各项构成等比数列,a22a12,公比为3,an23n2,n2,当n1时,a11,数列an的通项公式为an1.利用anSnSn1求通项时,应注意n2这一前提条件第2题易错解为an23n2.2.利用递推关系式求数列通项时,要合理转化确定相邻两项之间的关系第1题易错点有二:一是已知条件的转化不明确导致无从下手;二是叠加法求通项公式不熟练导致出错.热点3数列求和问题1.分组求和的常用方法(1)根据等差、等比数列分组;
7、(2)根据正、负项分组,此时数列的通项式中常会有(1)n等特征2.裂项相消的规律(1)裂项系数取决于前后两项分母的差;(2)裂项相消后前、后保留的项数一样多3.错位相减法的关注点(1)适用题型:等差数列an与等比数列bn对应项相乘anbn型数列求和;(2)步骤求和时先乘以等比数列bn的公比;把两个和的形式错位相减;整理结果形式1.已知数列an的前n项和为Sn2n1m,且a1,a4,a52成等差数列,bn,数列bn的前n项和为Tn,则满足Tn的最小正整数n的值为()A.11 B10 C9 D8答案B解析根据Sn2n1m可以求得an所以有a1m4,a416,a532,根据a1,a4,a52成等差数
8、列,可得m432232,从而求得m2,所以a12满足an2n,从而求得an2n(nN*),所以bn,所以Tn11,令1,整理得2n12019,解得n10.2.已知数列an的前n项和为Sn,且ann2n,则Sn_.答案(n1)2n12解析由ann2n且Sna1a2an得,Sn121222323(n1)2n1n2n,2Sn122223(n1)2nn2n1.两式相减得,Sn2122232nn2n1n2n12n12n2n1Snn2n12n12(n1)2n12.裂项相消后一般情况下剩余项是对称的,即前面剩余的项和后面剩余的项是对应的第1题易搞错剩余项,导致求和出错第2题错位相减法求和时,易出现以下两种错
9、误:一是两式错位相减时最后一项n2n1没有变号;二是对相减后的和式的结构认识模糊,把项数数错.热点4数列的综合应用1.解决数列周期性问题的方法先根据已知条件求出数列的前几项,确定数列的周期,再根据周期性求值2.数列与函数综合问题的注意点(1)数列是一类特殊的函数,其定义域是正整数集,在求数列最值或不等关系时要特别注意;(2)利用函数的方法研究数列中相关问题时,应准确构造函数,注意数列中相关限制条件的转化1.设数列an的前n项和为Sn,已知a1,an1则S2018等于()A. B. C. D.答案B解析由题知,a1,a221,a321,a42,a52,数列an是以4为周期的周期数列,a1a2a3
10、a42,S2018504(a1a2a3a4)a1a21008.故选B.2.已知数列an满足a133,an1an2n,则的最小值为_答案解析由题意得,a2a121,a3a222,a4a323,anan12(n1),将上述n1个式子累加,得(a2a1)(a3a2)(anan1)212(n1),即ana1n(n1),得ana1n(n1)n2n33,所以n1.设f(x)x1(x0),则f(x)1,由f(x)0,解得x;由f(x)0,解得0x.所以函数f(x)在,)上单调递增,在(0,)上单调递减因为nN*,所以当n6时,f(n)即取得最小值,而f(6)61.所以的最小值为f(6).第1题易把数列的周期
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考 文科 数学 专题 复习 方案 数列
限制150内