高考文科数学专题复习方案立体几何中的翻折问题和探索性问题.doc
《高考文科数学专题复习方案立体几何中的翻折问题和探索性问题.doc》由会员分享,可在线阅读,更多相关《高考文科数学专题复习方案立体几何中的翻折问题和探索性问题.doc(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第3课时立体几何中的翻折问题和探索性问题考情分析翻折问题和探索性问题是近年来高考立体几何中的常见题型翻折是联结平面几何与立体几何的纽带,实现平面向空间的转化;探索性问题常以动点形式出现,是带着解析几何的味道出现在立体几何中的神秘杀手,让很多学生不知所措!对于这两类题目,破题的秘诀是“以静制动,静观其变!”热点题型分析热点1翻折问题1处理好翻折问题的关键是抓住两图的特征关系,画好翻折前后的平面图形与立体图形,并弄清翻折前后哪些发生了变化,哪些没有发生变化,这些未变化的已知条件都是我们分析问题和解决问题的依据2以翻折棱为基准,在同一个半平面内的几何元素之间的关系是不变的,分别位于两个半平面内的几何
2、元素之间的关系一般是变化的垂直于翻折棱的直线翻折后,仍然垂直于翻折棱(2019河北五校联考)如图1,在直角梯形ABCD中,ADC90,ABCD,ADCDAB2,E为AC的中点,将ACD沿AC折起,使折起后的平面ACD与平面ABC垂直,如图2.在图2所示的几何体DABC中:(1)求证:BC平面ACD;(2)点F在棱CD上,且满足AD平面BEF,求几何体FBCE的体积解(1)证明:AC2,BACACD45,AB4,在ABC中,BC2AC2AB22ACABcos458,AB2AC2BC216,ACBC,平面ACD平面ABC,平面ACD平面ABCAC,BC平面ABC,BC平面ACD.(2)AD平面BE
3、F,AD平面ACD,平面ACD平面BEFEF,ADEF,E为AC的中点,EF为ACD的中位线,由(1)知,VFBCEVBCEFSCEFBC,SCEFSACD22,VFBCE2.1解决与翻折有关的问题的关键是搞清翻折前后的变和不变一般情况下,线段的长度是不变的,而位置关系往往会发生变化,抓住不变量是解决问题的突破口2在解决问题时,要综合考虑翻折前后的图形,既要分析翻折后的图形,也要分析翻折前的图形如图1,在矩形ABCD中,AB3,BC4,E,F分别在线段BC,AD上,EFAB,将矩形ABEF沿EF折起,记折起后的矩形为MNEF,且平面MNEF平面ECDF,如图2.(1)求证:NC平面MFD;(2
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考 文科 数学 专题 复习 方案 立体几何 中的 问题 探索
限制150内