焦点三角形的性质(经典!必看).doc
《焦点三角形的性质(经典!必看).doc》由会员分享,可在线阅读,更多相关《焦点三角形的性质(经典!必看).doc(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流焦点三角形的性质(经典!必看).精品文档.椭圆中焦点三角形的性质及应用定义:椭圆上任意一点与两焦点所构成的三角形称为焦点三角形。与焦点三角形的有关问题有意地考查了定义、三角形中的的正(余)弦定理、内角和定理、面积公式等.一焦点三角形的形状判定及周长、面积计算例1 椭圆上一点到焦点的距离之差为2,试判断的形状.解:由椭圆定义:. 又,故满足:故为直角三角形.说明:考查定义、利用已知、发挥联想,从而解题成功.性质一:已知椭圆方程为两焦点分别为设焦点三角形中则。性质二:已知椭圆方程为左右两焦点分别为设焦点三角形,若最大,则点P为椭圆短轴的端点。证明
2、:设,由焦半径公式可知:,在中,性质三:过椭圆焦点的所有弦中通径(垂直于焦点的弦)最短,通径为性质四:已知椭圆方程为两焦点分别为设焦点三角形中则证明:设则在中,由余弦定理得: 命题得证。(2000年高考题)已知椭圆的两焦点分别为若椭圆上存在一点使得求椭圆的离心率的取值范围。简解:由椭圆焦点三角形性质可知即 ,于是得到的取值范围是性质五:已知椭圆方程为两焦点分别为设焦点三角形,则椭圆的离心率。由正弦定理得:由等比定理得:而,已知椭圆的焦点是F1(1,0)、F2(1,0),P为椭圆上一点,且F1F2是PF1和PF2的等差中项(1)求椭圆的方程;(2)若点P在第三象限,且PF1F2120,求tanF1PF2解:(1)由题设2F1F2PF1PF22a,又2c2,b椭圆的方程为1(2)设F1PF2,则PF2F160椭圆的离心率则,整理得:5sin(1cos)故,tanF1PF2tan
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 焦点 三角形 性质 经典
限制150内