高考理科数学解答题专题训练(六)解析几何.docx
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《高考理科数学解答题专题训练(六)解析几何.docx》由会员分享,可在线阅读,更多相关《高考理科数学解答题专题训练(六)解析几何.docx(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、大题专项练(六)解析几何A组基础通关1.(2019安徽蚌埠高三第三次教学质检)已知点E(-2,0),F(2,0),P(x,y)是平面内一动点,P可以与点E,F重合.当P不与E,F重合时,直线PE与PF的斜率之积为-14.(1)求动点P的轨迹方程;(2)一个矩形的四条边与动点P的轨迹均相切,求该矩形面积的取值范围.解(1)当P与点E,F不重合时,由kPEkPF=-14,得yx+2yx-2=-14,即x24+y2=1(y0),当P与点E,F重合时,P(-2,0)或P(2,0).综上,动点P的轨迹方程为x24+y2=1.(2)记矩形面积为S,当矩形一边与坐标轴平行时,易知S=8.当矩形各边均不与坐标
2、轴平行时,根据对称性,设其中一边所在直线方程为y=kx+m,则对边方程为y=kx-m,另一边所在的直线为y=-1kx+n,则对边方程为y=-1kx-n,联立:x2+4y2=4,y=kx+m,得(1+4k2)x2+8kmx+4(m2-1)=0,则=0,即4k2+1=m2.矩形的一边长为d1=|2m|k2+1,同理:4k2+1=n2,矩形的另一边长为d2=|2n|1k2+1,S=d1d2=|2m|k2+1|2n|1k2+1=|4mnk|k2+1=4(4k2+1)(k2+4)(k2+1)2=44k4+17k2+4(k2+1)2=44+9k2(k2+1)2=44+9k2+1k2+2(8,10,综上:S
3、8,10.2.(2019山东烟台一模)已知F为抛物线C:y2=2px(p0)的焦点,过F的动直线交抛物线C于A,B两点.当直线与x轴垂直时,|AB|=4.(1)求抛物线C的方程;(2)设直线AB的斜率为1且与抛物线的准线l相交于点M,抛物线C上存在点P使得直线PA,PM,PB的斜率成等差数列,求点P的坐标.解(1)因为Fp2,0,在抛物线方程y2=2px中,令x=p2,可得y=p.于是当直线与x轴垂直时,|AB|=2p=4,解得p=2.所以抛物线的方程为y2=4x.(2)因为抛物线y2=4x的准线方程为x=-1,所以M(-1,-2).设直线AB的方程为y=x-1,联立y2=4x,y=x-1消去
4、x,得y2-4y-4=0.设A(x1,y1),B(x2,y2),则y1+y2=4,y1y2=-4.若点P(x0,y0)满足条件,则2kPM=kPA+kPB,即2y0+2x0+1=y0-y1x0-x1+y0-y2x0-x2,因为点P,A,B均在抛物线上,所以x0=y024,x1=y124,x2=y224.代入化简可得2(y0+2)y02+4=2y0+y1+y2y02+(y1+y2)y0+y1y2,将y1+y2=4,y1y2=-4代入,解得y0=2.将y0=2代入抛物线方程,可得x0=1.于是点P(1,2)为满足题意的点.3.已知椭圆C:x2a2+y2b2=1(ab0)的离心率为13,左、右焦点分
5、别为F1、F2,A为椭圆C上一点,AF1与y轴相交于B,|AB|=|F2B|,|OB|=43(O为坐标原点).(1)求椭圆C的方程;(2)设椭圆C的左、右顶点分别为A1,A2,过A1,A2分别作x轴的垂线l1,l2,椭圆C的一条切线l:y=kx+m(k0)分别与l1,l2交于点M,N,求证:MF1N=MF2N.解(1)如图,连接AF2,由题意得|AB|=|F2B|=|F1B|,所以BO为F1AF2的中位线,又BOF1F2,所以AF2F1F2,且|AF2|=2|BO|=b2a=83,又e=ca=13,a2=b2+c2,所以a2=9,b2=8,故所求椭圆C的方程为x29+y28=1.(2)由(1)
6、可得,F1(-1,0),F2(1,0),l1的方程为x=-3,l2的方程为x=3.由x=-3,y=kx+m,得x=-3,y=-3k+m,由x=3,y=kx+m得x=3,y=3k+m,所以M(-3,-3k+m),N(3,3k+m),所以F1M=(-2,-3k+m),F1N=(4,3k+m),所以F1MF1N=-8+m2-9k2.联立得x29+y28=1,y=kx+m,得(9k2+8)x2+18kmx+9m2-72=0.因为直线l与椭圆C相切,所以=(18km)2-4(9k2+8)(9m2-72)=0,化简得m2=9k2+8.所以F1MF1N=-8+m2-9k2=0,所以F1MF1N,故MF1N=
7、2.同理可得F2MF2N,MF2N=2.故MF1N=MF2N.4.(2019四川棠湖中学高三适应性考试)已知抛物线C:x2=4y,M为直线l:y=-1上任意一点,过点M作抛物线C的两条切线MA,MB,切点分别为A,B.(1)当M的坐标为(0,-1)时,求过M,A,B三点的圆的方程;(2)证明:以AB为直径的圆恒过点M.(1)解当M的坐标为(0,-1)时,设过M点的切线方程为y=kx-1,由x2=4y,y=kx-1,消y得x2-4kx+4=0.*令=(4k)2-44=0,解得k=1.代入方程*,解得A(2,1),B(-2,1).设圆心P的坐标为(0,a),由|PM|=|PB|,得a+1=2,解得
8、a=1.故过M,A,B三点的圆的方程为x2+(y-1)2=4.(2)证明设M(x0,-1),由已知得y=x24,y=12x,设切点分别为Ax1,x124,Bx2,x224,所以kMA=x12,kMB=x22,切线MA的方程为y-x124=x12(x-x1),即y=12x1x-14x12,切线MB的方程为y-x224=x22(x-x2),即y=12x2x-14x22.又因为切线MA过点M(x0,-1),所以得-1=12x0x1-14x12.又因为切线MB也过点M(x0,-1),所以得-1=12x0x2-14x22.所以x1,x2是方程-1=12x0x-14x2的两实根,由韦达定理得x1+x2=2
9、x0,x1x2=-4.因为MA=x1-x0,x124+1,MB=x2-x0,x224+1,所以MAMB=(x1-x0)(x2-x0)+x124+1x224+1=x1x2-x0(x1+x2)+x02+x12x2216+14(x1+x2)2-2x1x2+1.将x1+x2=2x0,x1x2=-4代入,得MAMB=0.所以以AB为直径的圆恒过点M.5.(2019山东潍坊三模)如图,椭圆C:x2a2+y2b2=1(ab0)的离心率为32,设A,B分别为椭圆C的右顶点,下顶点,OAB的面积为1.(1)求椭圆C的方程;(2)已知不经过点A的直线l:y=kx+m(k0,mR)交椭圆于P,Q两点,线段PQ的中点
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考 理科 数学 解答 专题 训练 解析几何
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内