《相似三角形基本模型及证明.doc》由会员分享,可在线阅读,更多相关《相似三角形基本模型及证明.doc(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流相似三角形基本模型及证明.精品文档.相似三角形基本模型与证明一、基本图形回顾经典模型构造相似辅助线双垂直模型 1.在平面直角坐标系xOy中,点A的坐标为(2,1),正比例函数y=kx的图象与线段OA的夹角是45,求这个正比例函数的表达式2.在ABC中,AB=,AC=4,BC=2,以AB为边在C点的异侧作ABD,使ABD为等腰直角三角形,求线段CD的长3.在ABC中,AC=BC,ACB=90,点M是AC上的一点,点N是BC上的一点,沿着直线MN折叠,使得点C恰好落在边AB上的P点求证:MC:NC=AP:PB4.如图,在直角坐标系中,矩形ABCO
2、的边OA在x轴上,边OC在y轴上,点B的坐标为(1,3),将矩形沿对角线AC翻折B点落在D点的位置,且AD交y轴于点E那么D点的坐标为( )A. B.C. D.5.已知,如图,直线y=2x2与坐标轴交于A、B两点以AB为短边在第一象限做一个矩形ABCD,使得矩形的两边之比为12。求C、D两点的坐标。构造相似辅助线A、X字型 6.如图:ABC中,D是AB上一点,AD=AC,BC边上的中线AE交CD于F。求证:7.四边形ABCD中,AC为AB、AD的比例中项,且AC平分DAB。求证:8.已知:如图,在ABC中,M是AC的中点,E、F是BC上的两点,且BEEFFC。求BN:NQ:QM相似之共线线段的
3、比例问题 9.(1)如图1,点在平行四边形ABCD的对角线BD上,一直线过点P分别交BA,BC的延长线于点Q,S,交于点求证: (2)如图2,图3,当点在平行四边形ABCD的对角线或的延长线上时,是否仍然成立?若成立,试给出证明;若不成立,试说明理由(要求仅以图2为例进行证明或说明);10.已知:如图,ABC中,ABAC,AD是中线,P是AD上一点,过C作CFAB,延长BP交AC于E,交CF于F求证:BP2PEPF 11.如图,已知ΔABC中,AD,BF分别为BC,AC边上的高,过D作AB的垂线交AB于E,交BF于G,交AC延长线于H。求证: DE2=EGEH 12.已知如图,P为
4、平行四边形ABCD的对角线AC上一点,过P的直线与AD、BC、CD的延长线、AB的延长线分别相交于点E、F、G、H.求证:13.已知,如图,锐角ABC中,ADBC于D,H为垂心(三角形三条高线的交点);在AD上有一点P,且BPC为直角求证:PD2ADDH 。相似之等积式类型综合 14.已知如图,CD是RtABC斜边AB上的高,E为BC的中点,ED的延长线交CA于F。求证:15.如图,在RtABC中,CD是斜边AB上的高,点M在CD上,DHBM且与AC的延长线交于点E.求证:(1)AEDCBM;(2)16.如图,ABC是直角三角形,ACB=90,CDAB于D,E是AC的中点,ED的延长线与CB的
5、延长线交于点F.(1)求证:.(2)若G是BC的中点,连接GD,GD与EF垂直吗?并说明理由.17.如图,四边形ABCD、DEFG都是正方形,连接AE、CG,AE与CG相交于点M,CG与AD相交于点N求证:18.如图,BD、CE分别是ABC的两边上的高,过D作DGBC于G,分别交CE及BA的延长线于F、H。求证:(1)DG2BGCG;(2)BGCGGFGH 相似基本模型应用 19.ABC和DEF是两个等腰直角三角形,A=D=90,DEF的顶点E位于边BC的中点上(1)如图1,设DE与AB交于点M,EF与AC交于点N,求证:BEMCNE;(2)如图2,将DEF绕点E旋转,使得DE与BA的延长线交于点M,EF与AC交于点N,于是,除(1)中的一对相似三角形外,能否再找出一对相似三角形并证明你的结论20.如图,四边形ABCD和四边形ACED都是平行四边形,点R为DE的中点,BR分别交AC、CD于点P、Q(1)请写出图中各对相似三角形(相似比为1除外);(2)求BP:PQ:QR21.如图,在ABC中,ADBC于D,DEAB于E,DFAC于F。求证:
限制150内