全等三角形--知识梳理.doc
《全等三角形--知识梳理.doc》由会员分享,可在线阅读,更多相关《全等三角形--知识梳理.doc(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、Four short words sum up what has lifted most successful individuals above the crowd: a little bit more.-author-date全等三角形-知识梳理全等三角形 知识梳理 全等三角形 知识梳理一、知识网络二、基础知识梳理(一)、基本概念1、“全等”的理解 全等的图形必须满足:(1)形状相同的图形;(2)大小相等的图形;即能够完全重合的两个图形叫全等形。同样我们把能够完全重合的两个三角形叫做全等三角形。2、全等三角形的性质(1)全等三角形对应边相等;(2)全等三角形对应角相等;3、全等三角形的判定
2、方法(1)三边对应相等的两个三角形全等。(2)两角和它们的夹边对应相等的两个三角形全等。(3)两角和其中一角的对边对应相等的两个三角形全等。(4)两边和它们的夹角对应相等的两个三角形全等。(5)斜边和一条直角边对应相等的两个直角三角形全等。4、角平分线的性质及判定性质:角平分线上的点到这个角的两边的距离相等判定:到一个角的两边距离相等的点在这个角平分线上(二)灵活运用定理1、判定两个三角形全等的定理中,必须具备三个条件,且至少要有一组边对应相等,因此在寻找全等的条件时,总是先寻找边相等的可能性。2、要善于发现和利用隐含的等量元素,如公共角、公共边、对顶角等。3、要善于灵活选择适当的方法判定两个
3、三角形全等。(1)已知条件中有两角对应相等,可找:夹边相等(ASA)任一组等角的对边相等(AAS)(2)已知条件中有两边对应相等,可找夹角相等(SAS)第三组边也相等(SSS)(3)已知条件中有一边一角对应相等,可找任一组角相等(AAS 或 ASA)夹等角的另一组边相等(SAS)三、典例赏析例1、如图: AD/BC,AB/CD你能找出其中的全等三角形吗?说明你的理由。解析:由AB/CD可得,由AD/BC可得,可得:,点评:通过间接条件得到直接条件,是解决问题时经常遇到的,目的是考查对知识的综合运用。你会做吗?变式1:改AD/BC,AB/CD为又如何?能得到一样的结论吗?变式2:若将“AD/BC
4、,AB/CD”改为AD/BC,能得到一样的结论吗?例2、如图,平分于于,求证:证明:因为平分所以,因为所以所以,即是的平分线。因为所以(角平分线上的点到角边的距离相等)点评:本题主要应用了全等三角形的有关知识和角平分线性质,解决本题的关键是把要证明相等的两条线段看作一个平分线上的点到该角两边的距离。怎样添加辅助线作辅助线时应考虑以下几个方面:(1)充分利用条件,体现条件集中的原则,充分揭示题目中的各个条件间的不明显的关系;(2)恰当转化条件;(3)恰当转化结论下面举例说明例如图1,在ABC中,B=2C,BAC的平分线交BC于D,求证:AB+BD=AC分析1: 因为B=2C,所以ACAB,可以在
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 全等 三角形 知识 梳理
限制150内