北师大版八年级上册第一章:探索勾股定理精讲.doc





《北师大版八年级上册第一章:探索勾股定理精讲.doc》由会员分享,可在线阅读,更多相关《北师大版八年级上册第一章:探索勾股定理精讲.doc(68页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、Four short words sum up what has lifted most successful individuals above the crowd: a little bit more.-author-date北师大版八年级上册第一章:探索勾股定理精讲探索勾股定理勾股定理第一节 探索勾股定理应知 基础知识1、勾股定理(1)勾股定理的内容:在直角三角形中,两直角边的 等于 的平方(2)勾股定理的表示方法:如果直角三角形的两直角边分别为,斜边为,那么有 。2、理解(1)勾股定理存在和运用的前提条件是在直角三角形中,如果不是直角三角形,那么三边之间不存在这种关系。(2)勾股定理把
2、“图形”与“数量”有机地结合起来,即把直角三角形的“形”与三边关系的“数”结合起来,是数形结合思想的典型代表之一。(3)利用勾股定理,可以在直角三角形中已知两边长的情况下,求出未知的第三边长。一般情况下,用表示直角边,表示斜边,则有:在运用勾股定理求第三边时,首先应确定是求直角边还是求斜边,在选择利用勾股定理的原形公式还是变形公式。【例1】在中,(1)若则 ;(2)若,则 ;(3)若,则 , 。【例2】已知直角三角形的两边长分别是3和4,如果这个三角形是直角三角形,求以第三边为边长的正方形的面积。3、勾股定理的验证至少掌握勾股定理的三种验证方法,并从中体会到这种验证方法所体现的数学思想。【例3
3、】2002年8月在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的勾股圆方图,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图所示)如果大正方形的面积是13,小正方形的面积是1,直角三角形较短直角边为a,较长直角边为b,那么的值为( ) A13 B19 C25 D169 应会 基本方法 1、如何利用勾股定理求长度 利用勾股定理求长度,关键是找出直角三角形或构造直角三角形,把实际问题转化为直角三角形问题。在已知两边求第三边时,关键是弄清已知什么边,要求什么边,用平方和还是平方差。 【例4】如图,有一只小鸟在一棵高13m的大树树梢上捉虫子,它的伙伴在离该树12m,高8m的一
4、棵小树树梢上发出友好的叫声,它立刻以2m/s的速度飞向小树树梢,那么这只小鸟至少几秒才可能到达小树和伙伴在一起? 【例5】已知:如图,四边形ABCD中,B,D是Rt,A=45若DC=2cm,AB=5cm,求AD和BC的长 【例6】如图,第个等腰直角三角形的直角边长等于1,以它的斜边长为腰长作第个等腰直角三角形,再以第个等腰直角三角形的斜边长为腰长作第个等腰直角三角形依次得到一系列的等腰直角三角形,其序号依次为、 (1)分别求出第、个等腰直角三角形的斜边长; (2)归纳出第n个等腰直角三角形的斜边长(n为正整数) 2、如何利用勾股定理求面积 利用勾股定理求面积,关键是注意转化思想的应用,把所求得
5、面积转化到已知的数量关系中去,有时还要注意整体思想的应用。【例7】如图,在RtABC中,ACB90,以ABC各边为边在ABC外作三个正方形,S1,S2,S3分别表示这三个正方形的面积,S1=81,S3 =225,则S2= 。S1S2S3ABC变式:将ABC外的三个正方形换成其它图形是否有类似结论呢?如图,以直角三角形的三边为直径作三个半圆,则这三个半圆的面积S1、S2、S3之间的关系是_【例8】下图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形若正方形A、B、C、D的边长分别是3、5、2、3,则最大正方形E的面积是( )A13 B26 C47 D94 【例9】直角三
6、角形周长为12cm,斜边长为5cm,求直角三角形的面积。 3、勾股定理与方程相结合的应用在进行直角三角形的有关计算中,如果不能直接运用勾股定理求解时,往往通过勾股定理列方程求解。【例10】如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD对折,使它落在斜边AB上,且与AE重合,求CD的长【例11】如图,ABC中,AB=13,BC=14,AC=15,求BC边上的高AD【例12】为了丰富少年儿童的业余文化生活,某社区在如图9所示AB所在的直线上建一图书阅览室,本社区有两所学校所在的位置在点C和D处CAAB于A,DBAB于B,已知AB=25km,CA=15km,
7、DB=10km,试问:阅览室E应建在距A多少处,才能使它到C、D两所学校的距离相等? 【例13】一架梯子的长度为25米,如图斜靠在墙上,梯子顶端离墙底端为7米。(1)这个梯子顶端离地面有多高?(2)如果梯子的顶端下滑了4米,那么梯子的底部在水平方向滑动了几米? 【规律总结】第二节 勾股定理逆定理 应知 基础知识1、勾股定理逆定理的内容:如果三角形的三边长a,b,c满足 ,那么这个三角形是 ,且最长边所对的角为 。总结:到目前为止判定直角三角形的方法有多少种了?2、理解:(1)勾股定理是直角三角形的性质定理,而其逆定理是判定定理;勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关。(2)
8、如何用勾股定理的逆定理判定一个三角形是否是直角三角形:首先确定最大边(如:C,但不要认为最大边一定是C)其次验证c2与a2+b2是否具有相等关系,若c2=a2+b2,则ABC是以C为直角的三角形;若c2a2+b2,则ABC是以C为钝角的三角形;若c2a2+b2,则ABC是以C为锐角三角形。3勾股数能够成为直角三角形三条边长的三个正整数,称为 显然,一组勾股数必须满足两个条件:满足 ;都是 。若(a,b,c)为一组基本勾股数,则(ka,kb,kc)也为勾股数,其中k为正整数。即将一组勾股数同时扩大或缩小相同的倍数仍是一组勾股数。【例1】若三角形三边长分别为,当 时,此三角形为直角三角形。 【例2
9、】;,且为自然数)。上面各组数中,勾股数有 (填序号)。 应会 基本方法1、利用非负数的性质判断三角形的形状【例3】已知,试判断以为三边长的三角形的形状。【练习】如果一个三角形的三边长满足,试说明这个三角形是直角三角形。【例4】请阅读下列解题过程:已知a、b、c为ABC的三边,且满足a2c2-b+2c2=a4-b4,试判断ABC的形状 解:a2c2-b2c2=a4-b4,A c2(a2-b2)=(a2+b2)(a2-b2),B c2=a2+b2,C ABC为直角三角形D 问:(1)在上述解题过程中,从哪一步开始出现错误:第C步 ; (2)错误的原因是:等式两边同时除以a2-b2 ; (3)本题
10、正确的结论是:直角三角形或等腰三角形 【规律总结】2、勾股数【例5】观察下表:列举猜想3,4,5 32=4+55,12,13 52=12+137,24,25 72=24+2513,b,c 132=b+c请你结合该表格及相关知识,求出b,c的值【练习】(1)一位同学从勾股数“3,4,5”中发现,由此他发现最小数是奇数的勾股数的构造方法你发现了吗?请你写出一下几组勾股数组:5, 12, 13;7, 24, 25;9, 40, 41; (2)写出一般规律的表达方式,(用字母n表示,n为正整数) 【例6】我国古代把直角三角形中较短的直角边称为勾,较长的称为股,斜边称为弦并发现了“勾股定理”若直角三角形
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 北师大 年级 上册 第一章 探索 勾股定理

限制150内