结构动力学哈工大版课后习题解答.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《结构动力学哈工大版课后习题解答.doc》由会员分享,可在线阅读,更多相关《结构动力学哈工大版课后习题解答.doc(24页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流结构动力学哈工大版课后习题解答.精品文档.第一章 单自由度系统1.1 总结求单自由度系统固有频率的方法和步骤。单自由度系统固有频率求法有:牛顿第二定律法、动量距定理法、拉格朗日方程法和能量守恒定理法。1、 牛顿第二定律法 适用范围:所有的单自由度系统的振动。解题步骤:(1) 对系统进行受力分析,得到系统所受的合力; (2) 利用牛顿第二定律,得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。2、 动量距定理法适用范围:绕定轴转动的单自由度系统的振动。解题步骤:(1) 对系统进行受力分析和动量距分析;(
2、2) 利用动量距定理J,得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。3、 拉格朗日方程法:适用范围:所有的单自由度系统的振动。解题步骤:(1)设系统的广义坐标为,写出系统对于坐标的动能T和势能U的表达式;进一步写求出拉格朗日函数的表达式:L=T-U ; (2)由格朗日方程=0,得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。4、 能量守恒定理法适用范围:所有无阻尼的单自由度保守系统的振动。解题步骤:(1)对系统进行运动分析、选广义坐标、写出在该坐标下系统的动能T和势能U的表达式;进一步写出机械能守恒定理
3、的表达式 T+U=Const (2)将能量守恒定理T+U=Const对时间求导得零,即,进一步得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。1.2 叙述用衰减法求单自由度系统阻尼比的方法和步骤。用衰减法求单自由度系统阻尼比的方法有两个:衰减曲线法和共振法。方法一:衰减曲线法。求解步骤:(1)利用试验测得单自由度系统的衰减振动曲线,并测得周期和相邻波峰和波谷的幅值、。 (2)由对数衰减率定义 , 进一步推导有 因为较小, 所以有 方法二:共振法求单自由度系统的阻尼比。(1)通过实验,绘出系统的幅频曲线, 如下图:单自由度系统的幅频曲线(2)分析以上幅
4、频曲线图,得到:于是 进一步 最后 1.3 叙述用正选弦激励求单自由度系统阻尼比的方法和步骤。用正选弦激励求单自由度系统阻尼比的方法有两个:幅频(相频)曲线法和功率法。方法一:幅频(相频)曲线法当单自由度系统在正弦激励作用下其稳态响应为:其中: ; (1) (2)从实验所得的幅频曲线和相频曲线图上查的相关差数,由上述(1),(2)式求得阻尼比。 方法二:功率法:(1) 单自由度系统在作用下的振动过程中,在一个周期内,弹性力作功为 、阻尼力做功为 、激振力做作功为 ;(2) 由机械能守恒定理得,弹性力、阻尼力和激振力在一个周期内所作功为零,即: +;于是 - 进一步得: ;(3) 当时,则 ,得
5、 , 。m图1-33(a)1.4 求图1-35中标出参数的系统的固有频率。 (a)此系统相当于两个弹簧串联,弹簧刚度为k1、简支梁刚度为 ; 等效刚度为k;则有 ;则固有频率为:; 图1-33(b)m(b)此系统相当于两个弹簧并联, 等效刚度为: 则固有频率为: m图1-33(c)(c)系统的等效刚度则系统的固有频率为 图1-33(d)m(d)由动量距定理得: 得: , 则 。1.5 求下图所示系统的固有频率。图中匀质轮A半径R,重物B的重量为P/2,弹簧刚度为k. 图1-34AB0x 解:以 为广义坐标,则 系统的动能为系统的势能为: 拉格朗日函数为L=T-U ;由拉格朗日方程 得 则,所以
6、:系统的固有频率为图1-35RM1.6求图1-35所示系统的固有频率。图中磙子半径为R,质量为M,作纯滚动。弹簧刚度为K 。 解:磙子作平面运动, 其动能T=T平动 +T转动 。 而势能系统机械能由得系统运动微分方程得系统的固有频率 1.7求图1-36所示齿轮系统的固有频率。已知齿轮A的质量为mA,半径为rA,齿轮B的质量为mB,半径为rB,杆AC的扭转刚度为KA, ,杆BD的扭转刚度为KB, 解:由齿轮转速之间的关系 得角速度 ;转角 ;系统的动能为:D(c)AB图1-36C系统的势能为: 系统的机械能为由 得系统运动微分方程因此系统的固有频率为: 1.8已知图所示振动系统中,匀质杆长为,
7、质量为m,两弹簧刚度皆为K,阻尼系数为C,求当初始条件时()的稳态解; ()的解; 解:利用动量矩定理建立系统运动微分方程而 ; 得 化简得 (1)(1)求的稳态解;将代入方程(1)得 (2)令 得 (3)设方程(3)的稳态解为 (4)将(4)式代入方程(3)可以求得:(2)求的解;将代入方程(1)得 (5)令 得 (6)方程(6)成为求有阻尼的单自由度系统对于脉冲激励的响应。由方程(6)可以得到初始加速度然后积分求初始速度再积分求初位移这样方程(6)的解就是系统对于初始条件、和的瞬态响应将其代入方程(6)可以求得:最后得1.9图所示盒内有一弹簧振子,其质量为m,阻尼为C,刚度为K,处于静止状
8、态,方盒距地面高度为H,求方盒自由落下与地面粘住后弹簧振子的振动历程及振动频率。解:因为在自由落体过程中弹簧无变形,所以振子与盒子之间无相对位移。在粘地瞬间,由机械能守恒定理 的振子的初速度;k/2c mk/2H图1-38底版与地面粘住后,弹簧振子的振动是对于初速度的主动隔振系统的运动微分方程为: 或 或 系统的运动方程是对于初始条件的响应: k/2ck/2y(t)y my图1-391.10汽车以速度V在水平路面行使。其单自由度模型如图。设m、k、c已知。路面波动情况可以用正弦函数y=hsin(at)表示。求:(1)建立汽车上下振动的数学模型;(2)汽车振动的稳态解。解:(1)建立汽车上下振动
9、的数学模型;由题意可以列出其运动方程:其中:表示路面波动情况;1表示汽车上下波动位移。 将其整理为: (1) 将代入得(2)汽车振动的稳态解: 设稳态响应为: 代入系统运动微分方程(1)可解得:1.11.若电磁激振力可写为,求将其作用在参数为m、 k、 c的弹簧振子上的稳态响应。解:首先将此激振力按照傅里叶级数展开:其中:; 因为是偶函数,所以。于是 而 式中 1.12.若流体的阻尼力可写为,求其等效粘性阻尼。解:(1)流体的阻尼力为(2)设位移为 而 ;(3)流体的阻尼力的元功为(4)流体的阻尼力在一个振动周期之内所消耗的能量为: (5)粘性阻尼力在一个振动周期之内所消耗的能量为: (6)等
10、效粘性阻尼:取, 令 可得:第二章 两自由度系统2.1 求如图2-11所示系统的固有频率和固有振型,并画出振型。图2-11解:(1)系统的振动微分方程即 ; ; (1) (2)系统的特征方程 根据微分方程理论,设方程组(1)的解为:; (2)将表达式(2)代入方程组(1)得: (3)因为不可能总为零,所以只有前面的系数为零:即 ; (4)(3)系统的频率方程 若系统振动,则方程有非零解,那么方程组的系数行列式等于零,即:展开得 ; (5)系统的固有频率为: ; (6)(4)系统的固有振型 将,代入系统的特征方程(4)式中的任一式,得系统的固有振型,即各阶振幅比为: (7)系统各阶振型如图所示:
11、其中(a)是一阶振型,(b)是二阶振型。(a)(b)+1+1+1-1(5)系统的主振动系统的 第一主振动为系统的第一主振动为2mmkkLLL图2-122.2确定图2-12所示系统的固有频率和固有振型。 解:(1)系统的动能 (2)系统的势能 因为弹簧上端A、B两点的位移 所以系统的势能为 (3)系统的Lagrange函数 (4)系统的运动微分方程 由Lagrange方程 可得 即(5)系统的特征方程设系统的运动微分方程的解为代入系统的运动微分方程得系统的特征方程即 (6)系统的频率方程 系统的特征方程有非零解得充分必要条件是其系数行列式为零即解得,系统的固有频率 (7)系统的固有振型 将系统的
12、固有频率代入系统的特征方程中的任何一个可得系统的固有振型 (8)系统的主振动图2-132kkmL2.3一均质细杆在其端点由两个线性弹簧支撑(图2-13),杆的质量为m,两弹簧的刚度分别为2K和K。(1)写出用杆端铅直位移u1和u2表示的运动方程; (2)写出它的两个固有频率;(3)画出它的两个固有振型; 解:(1) 均质杆的运动微分方程 以均质杆的静平衡位置为坐标原点,均质杆的质心C的位移为 均质杆绕质心C的转角为 均质杆的运动微分方程 即 (1)(2)系统的特征方程 设运动微分方程(1)的解为 、,代入方程(1)即(4) 系统的频率方程 系统的特征方程有非零解得充分必要条件是其系数行列式为零
13、即 解得系统的两个固有频率 (5) 系统的固有振型 将系统的固有频率代入系统的特征方程中的任何一个可得系统的两阶固有振型 (6)系统的两阶主振动2mm2k图2-142.4确定图2-14所示系统的固有频率和固有振型,并画出固有振型。解:(1)系统运动微分方程 即 (1) (2)系统特征方程 设运动微分方程(1)的解为和 ,代入方程(1)即(3)系统频率方程系统的特征方程有非零解得充分必要条件是其系数行列式为零即 解得(4)系统的固有振型 将系统的固有频率代入系统的特征方程中的任何一个可得系统的两阶固有振型 -1/2+1+1+1图2-152.5图2-15所示的均质细杆悬挂成一摆,杆的质量为m,长为
14、L,悬线长为L/2,求该系统的固有频率和固有振型。解:(1)求均质细杆质心的坐标和质心的速度 (2)求系统的Lagrange函数 (3)求系统的运动微分方程由Lagrange方程 可得 即 (4)系统特征方程 设运动微分方程(1)的解为 和,代入方程(1)即 (3)系统频率方程系统的特征方程有非零解得充分必要条件是其系数行列式为零即 解得系统的两个固有频率 (4)系统的固有振型 将系统的固有频率代入系统的特征方程中的任何一个可得系统的两阶固有振型 +1-13/111+1+1图2-162.6两层楼用集中质量表示如图2-16所示的系统。其中;证明该系统的固有频率和固有振型为: ; 解:(1)系统振
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 结构 动力学 哈工大 课后 习题 解答
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内