《双馈式风力发电机剖析.doc》由会员分享,可在线阅读,更多相关《双馈式风力发电机剖析.doc(25页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、Four short words sum up what has lifted most successful individuals above the crowd: a little bit more.-author-date双馈式风力发电机剖析_x0001_双馈式风力发电机【摘要】随着地球能源的日益紧缺,环境污染的日益加重,风能作为可再生绿色能源越来越被人们重视,风力发电技术成为世界各国研究的重点。变速恒频发电技术是一种新型风力发电技术,其主要优点在于风轮以变速运行。通过调节发电机转子电流的大小、频率和相位,从而实现转速的调节。而其中双馈发电机构成的风力发电系统已经成为目前国际上风力发电
2、的必然趋势。关键词:风能 风力发电 变速恒频 双馈式发电机 一、 风力发电风能作为一种清洁的可再生能源,越来越受到世界各国的重视。风力发电:把风的动能转变成机械动能,再把机械能转化为电力动能,这就是风力发电。风力发电在芬兰、丹麦等国家很流行;中国也在西部地区大力提倡。我国的风力资源极为丰富,绝大多数地区的平均风速都在每秒3米以上,特别是东北、西北、西南高原和沿海岛屿,平均风速更大;有的地方,一年三分之一以上的时间都是大风天。在这些地区,发展风力发电是很有前途的。风力发电正在世界上形成一股热潮,因为风力发电不需要使用燃料,也不会产生辐射或空气污染。风力发电的原理:是利用风力带动风车叶片旋转,再透
3、过增速机将旋转的速度提升,来促使发电机发电。依据目前的风车技术,大约是每秒三米的微风速度(微风的程度),便可以开始发电。风力发电机因风量不稳定,故其输出的是1325V变化的交流电,须经充电器整流,再对蓄电瓶充电,使风力发电机产生的电能变成化学能。然后用有保护电路的逆变电源,把电瓶里的化学能转变成交流220V市电,才能保证稳定使用。风力发电所需要的装置,称作风力发电机组。这种风力发电机组,大体上可分风轮(包括尾舵)、发电机和铁塔三部分。风轮是把风的动能转变为机械能的重要部件,它由两只(或更多只)螺旋桨形的叶轮组成。当风吹向浆叶时,桨叶上产生气动力驱动风轮转动。桨叶的材料要求强度高、重量轻,目前多
4、用玻璃钢或其它复合材料(如碳纤维)来制造。(现在还有一些垂直风轮,s型旋转叶片等,其作用也与常规螺旋桨型叶片相同)由于风轮的转速比较低,而且风力的大小和方向经常变化着,这又使转速不稳定;所以,在带动发电机之前,还必须附加一个把转速提高到发电机额定转速的齿轮变速箱,再加一个调速机构使转速保持稳定,然后再联接到发电机上。为保持风轮始终对准风向以获得最大的功率,还需在风轮的后面装一个类似风向标的尾舵。铁塔是支承风轮、尾舵和发电机的构架。它一般修建得比较高,为的是获得较大的和较均匀的风力,又要有足够的强度。铁塔高度视地面障碍物对风速影响的情况,以及风轮的直径大小而定,一般在6-20米范围内。发电机的作
5、用,是把由风轮得到的恒定转速,通过升速传递给发电机构均匀运转,因而把机械能转变为电能。二、变速恒频发电技术众所周知,风电的产生正是通过风力推动桨叶转动,同时带动发电机的转动,将风能转化为机械能从而产生电能,然而,风速不是恒定不变的,这就造成桨叶的转速的不稳定,导致了发电机所发出的电能的电压和频率的波动。为了使风力发电系统能够发出稳定的电能,人们从多种科学角度对风机进行了控制,包括:通过对风机采用变桨距控制,改变风机的桨距角(即风机叶片与风轮平面的夹角),从而改变风机叶片的迎风角度,调整风机对风能的利用率的方式;利用桨叶翼型的本身所具有的失速特性,让风机在风速大于额定风速的情况下,利用气流的攻角
6、增大到失速的条件下,在桨叶的表面产生涡流,从而使风机的效率降低,由此来限制发电机的输出功率的方式等等。变速恒频发电技术是一种新型风力发电技术,其主要优点在于风轮以变速运行。这一调速系统和变桨距调节技术环节结合起来,就构成了变速恒频风力发电系统。其调节方法是:起动时通过调节桨距控制发电机转速;并网后在额定风速以下,调节发电机的转矩使转速跟随风速变化,保持最佳叶尖速比以获得最大风能;在额定风速以上,采用失速与桨距双重调节、减少桨距调节的频繁动作,限制风力机获取的能量,保证发电机功率输出的稳定性和良好的动态特性,提高传动系统的柔性。上述方式目前被公认为最优化的调节方式,也是未来风电技术发展的主要方向
7、。其主要优点是可大范围调节转速,使风能利用系数保持在最佳值;能吸收和存储阵风能量,减少阵风冲击对风力发电机产生的疲劳损坏、机械应力和转矩脉动,延长机组寿命,减小噪声;还可控制有功功率和无功功率,改善电能质量。尽管变速系统与恒速系统相比,风电转换装置中的电力电子部分比较复杂和昂贵,但成本在大型风力发电机组中所占比例并不大,因而大力发展变速恒频技术将是今后风力发电的必然趋势。 目前,采用变速恒频技术的风力发电机组,由于采用不同类型的发电机,并辅之相关的电力电子变流装置,配合发电机进行功率控制,就构成了形式多样的变速恒频风力发电系统。主要有以下几类:1、异步型 (1)鼠笼型异步发电机:功率为600/
8、125kW 750kW 800kW 12500kW,定子向电网输送不同功率的50Hz交流电;(2)绕线式双馈异步发电机:功率为1500kW,定子向电网输送50Hz交流电,转子由变频器控制,向电网间接输送 有功或无功功率。2、同步型(1)永磁同步发电机:功率为750kW 1200kW 1500kW,由永磁体产生磁场,定子输出经全功率整流逆变后向电网输送50Hz交流电;(2)电励磁同步发电机;由外接到转子上的直流电流产生磁场,定子输出经全功率整流逆变后向电网输送50Hz交流电。其中,由双馈发电机构成的变速恒频控制方案是在转子电路实现的,采用双馈发电方式,突破了机电系统必须严格同步运行的传统观念,使
9、原动机转速不受发电机输出频率限制,而发电机输出电压和电流的频率、幅值和相位也不受转子速度和瞬时位置的影响,变机电系统之间的刚性连接为柔性连接。基于诸多优点,由双馈发电机构成的变速恒频风力发电系统已经成为目前国际上风力发电方面的研究热点和必然的发展趋势。三、双馈式风力发电机目前在风力发电领域,双馈电机的应用逐渐占有重要地位。这种技术不过分依赖于蓄电池的容量,而是从励磁系统入手,对励磁电流加以适当的控制,从而达到输出一个恒频电能的目的。双馈异步发电机实质上是一种绕线式转子电机,由于其定、转子都能向电网馈电,故简称双馈电机。双馈电机虽然属于异步机的范畴,但是由于其具有独立的励磁绕组,可以象同步电机一
10、样施加励磁,调节功率因数,所以又称为交流励磁电机,也有称为异步化同步电机。同步电机由于是直流励磁,其可调量只有一个电流的幅值,所以同步电机一般只能对无功功率进行调节。交流励磁电机的可调量有三个:一是可调节的励磁电流幅值;二是可改变励磁频率;三是可改变相位。这说明交流励磁电机比同步电机多了两个可调量。通过改变励磁频率,可改变发电机的转速,达到调速的目的。这样,在负荷突变时,可通过快速控制励磁频率来改变电机转速,充分利用转子的动能,释放或吸收负荷,对电网扰动远比常规电机小。改变转子励磁的相位时,由转子电流产生的转子磁场在气隙空间的位置上有一个位移,这就改变了发电机电势与电网电压相量的相对位移,也就
11、改变了电机的功率角。这说明电机的功率角也可以进行调节。所以交流励磁不仅可调节无功功率,还可以调节有功功率。1、双馈异步发电机的结构双馈风力发电变速恒频机组结构示意图机舱:机舱包容着风力发电机的关键设备,包括齿轮箱、发电机。维护人员可以通过风力发电机塔进入机舱。机舱左端是风力发电机转子,即转子叶片及轴。 转子叶片:捉获风,并将风力传送到转子轴心。现代600千瓦风力发电机上,每个转子叶片的测量长度大约为20米,而且被设计得很象飞机的机翼。 轴心:转子轴心附着在风力发电机的低速轴上。 低速轴:风力发电机的低速轴将转子轴心与齿轮箱连接在一起。在现代600千瓦风力发电机上,转子转速相当慢,大约为19至3
12、0转每分钟。轴中有用于液压系统的导管,来激发空气动力闸的运行。 齿轮箱:齿轮箱左边是低速轴,它可以将高速轴的转速提高至低速轴的50倍。高速轴及其机械闸:高速轴以1500转每分钟运转,并驱动发电机。它装备有紧急机械闸,用于空气动力闸失效时,或风力发电机被维修时。发电机:通常被称为感应电机或异步发电机。在现代风力发电机上,最大电力输出通常为500至1500千瓦。偏航装置:借助电动机转动机舱,以使转子正对着风。偏航装置由电子控制器操作,电子控制器可以通过风向标来感觉风向。通常,在风改变其方向时,风力发电机一次只会偏转几度。电子控制器:包含一台不断监控风力发电机状态的计算机,并控制偏航装置。为防止任何
13、故障(即齿轮箱或发电机的过热),该控制器可以自动停止风力发电机的转动,并通过电话调制解调器来呼叫风力发电机操作员。 液压系统:用于重置风力发电机的空气动力闸。 冷却元件:包含一个风扇,用于冷却发电机。此外,它包含一个油冷却元件,用于冷却齿轮箱内的油。一些风力发电机具有水冷发电机。 塔:风力发电机塔载有机舱及转子。通常高的塔具有优势,因为离地面越高,风速越大。现代600千瓦风汽轮机的塔高为40至60米。它可以为管状的塔,也可以是格子状的塔。管状的塔对于维修人员更为安全,因为他们可以通过内部的梯子到达塔顶。格状的塔的优点在于它比较便宜。 风速计及风向标:用于测量风速及风向。2、双馈电机的基本工作原
14、理设双馈电机的定转子绕组均为对称绕组,电机的极对数为,根据旋转磁场理论,当定子对称三相绕组施以对称三相电压,有对称三相电流流过时,会在电机的气隙中形成一个旋转的磁场,这个旋转磁场的转速称为同步转速,它与电网频率及电机的极对数的关系如下:(1-1)同样在转子三相对称绕组上通入频率为的三相对称电流,所产生旋转磁场相对于转子本身的旋转速度为:(1-2)由式1-2可知,改变频率,即可改变,而且若改变通入转子三相电流的相序,还可以改变此转子旋转磁场的转向。因此,若设为对应于电网频率为50Hz时双馈发电机的同步转速,而为电机转子本身的旋转速度,则只要维持,见式1-3,则双馈电机定子绕组的感应电势,如同在同
15、步发电机时一样,其频率将始终维持为不变。(1-3)双馈电机的转差率,则双馈电机转子三相绕组内通入的电流频率应为:(1-4)公式1-4表明,在异步电机转子以变化的转速转动时,只要在转子的三相对称绕组中通入转差频率(即)的电流,则在双馈电机的定子绕组中就能产生50Hz的恒频电势。所以根据上述原理,只要控制好转子电流的频率就可以实现变速恒频发电了。根据双馈电机转子转速的变化,双馈发电机可有以下三种运行状态:(1) 亚同步运行状态:在此种状态下,由转差频率为的电流产生的旋转磁场转速与转子的转速方向相同,因此有。(2) 超同步运行状态:在此种状态下,改变通入转子绕组的频率为的电流相序,则其所产生的旋转磁
16、场的转速与转子的转速方向相反,因此有。(3) 同步运行状态:在此种状态下,转差频率,这表明此时通入转子绕组的电流频率为0,也即直流电流,与普通的同步电机一样。3、双馈发电系统的优缺点交流励磁变速恒频双馈发电系统有如下优点: (1)在原动机变速运行场合中,实现高效、优质发电。双馈感应发电机可通过调节转子励磁电流的幅值、频率与相位,在原动机速度变化时也可保证发出恒定频率的电能,从而提高了机组的运行效率,延长了机组的使用寿命。 (2)允许原动机在一定范围内变速运行,可以在同步速上下30%转速范围内运行;简化了调整装置,减少了调速时的机械应力。同时使机组控制更加灵活、方便,提高了机组运行效率。 (3)
17、调节励磁电流幅值,可调节发出的有功功率;调节励磁电流相位,可调节发出的无功功率。可实现有功功率和无功功率的独立调节,达到改变功率角使发电机稳定运行的目的。所以可通过交流励磁使发电机吸收更多无功功率,参与电网的无功功率调节,解决电网电压升高的弊病,从而提高电网运行效率、电能质量与稳定性。 (4)双馈感应发电机通过对转子实施交流励磁,精确地调节发电机定子输出电压,使其满足并网要求,实现安全快速的“柔性”并网操作。 (5)需要变频控制的功率仅是电机额定容量的一部分,使变频装置体积减小,成本降低,投资减少。 双馈式发电系统缺点如下: (1)双馈式风力发电机组低风速下的风轮机转速也很低,直接用风轮机带动双馈电机转子将满足不了双馈发电机对转子转速的要求,必须引入齿轮箱升速后,再同双馈发电机转子连接进行发电。然而齿轮箱成本很高,且易出现故障,需要经常维护,可靠性差;同时齿轮箱也是风力发电系统产生噪声污染的一个主要因素。 (2)当低负荷运行时,效率低。 (3)电机转子绕组带有滑环、碳刷,增加维护和故障率。 (4)控制系统结构复杂。-
限制150内