小升初专项训练--比例百分数篇.doc
《小升初专项训练--比例百分数篇.doc》由会员分享,可在线阅读,更多相关《小升初专项训练--比例百分数篇.doc(36页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、Four short words sum up what has lifted most successful individuals above the crowd: a little bit more.-author-date小升初专项训练-比例百分数篇一、计算及其规律 小升初专项训练 比例百分数篇一、小升初考试热点及命题方向分数百分数是小学六年级重点学习的知识点,也是小升初重点考察的知识点,这一部分主要考察三大块,分百应用题;比和比例;经济浓度问题;三块的地位是均等的,在考试中都有可能出现,希望同学们全面复习,而不要厚此薄彼。二、考点预测出题方式依然是大题中必然出现一道或者两道和本章内容
2、相关的题目,占的分值权重较大,只要认真复习,掌握解题规律,则可以顺利的拿下这部分分值。三、知识要点分数百分数应用题分数、百分数应用题是小学数学的重要内容,也是小学数学重点和难点之一一方面它是在整数应用题基础上的继续和深化;另一方面,它有其本身的特点和解题规律因此,在这类问题中,数量之间以及“量”、“率”之间的相依关系与整数应用题比较,就显得较为复杂,这就给正确地选择解题方法,正确解答带来一定困难为了学好分数、百分数应用题的解法必须做好以下几方面工作具备整数应用题的解题能力解答整数应用题的基础知识,如概念、性质、法则、公式等仍广泛用于分数、百分数应用题在理解、掌握分数的意义和性质的前提下灵活运用
3、学会画线段示意图线段示意图能直观地揭示“量”与“百分率”之间的对应关系,发现量与百分率之间的隐蔽条件它可以帮助我们在复杂的条件与问题中理清思路,正确地进行分析、综合、判断和推理学会多角度、多侧面思考问题的方法分数百分数应用题的条件与问题之间的关系变化多端,单靠统一的思路模式有时很难找到正确解题方法因此,在解题过程中,要善于掌握对应、假设、转化等多种解题方法,在寻找正确的解题方法同时,不断地开拓解题思路比和比例这一讲主要涉及比例的意义和性质,按比例分配,正反比例等几个知识。在应用题的各种类型中,有一类与数量之间的(正、反)比例关系有关在解答这类应用题时,我们需要对题中各个量之间的关系作出正确的判
4、断成正比或反比的量中都有两种相关联的量一种量(记作x)变化时另一种量(记作y)也随着变化与这两个量联系着,有一个不变的量(记为k)。在判断变量x与y是否成正、反比例时,我们要紧紧抓住这个不变量k如:成正比例;如果k是y与x的积,即在x变化时,y与x的积不变:xyk,那么y与x成反比例如果这两个关系式都不成立,那么y与x不成(正和反)比例经济浓度问题这一节的内容与生活实际联系很紧密,在浓度问题中要理解好溶剂、溶质、溶液、浓度这几个量之间的关系。而经济问题中,则要恰当处理好成本、售价、利润、利润率这几个量的关系。四、典型例题解析1 分数百分数应用题【例1】()某班有学生48人,女生占全班的37.5
5、,后来又转来女生若干人,这时人数恰好是占全班人数的40,问转来几名女生?【解】这是一道变换单位“1”的分数应用题,需抓住男生人数这个不变量,如果按浓度问题做,就简单多了。浓度差之比124 重量之比 24148241=2人方法二:男生原来有48(1-37.5)=30,来了女生后男生的人数书不变的,所以后来全班的总人数就是30(1-40)=50,所以增加的2人就是转来的女生人数。【例2】()把一个正方形的一边减少 20,另一边增加2米,得到一个长方形.它与原来的正方形面积相等.问正方形的面积是多少?【解】设正方形的边长是“1”.因为长方形与原来的正方形面积相等,一边减少了 20,另一边将增加所以正
6、方形的边长是2258(米).正方形的面积是88 64(平方米).【例3】()学校男生人数占45,会游泳的学生占54。男生中会游泳的占72,问在全体学生中不会游泳的女生占百分之几?【解1】在全体学生中,不会游泳的女生占33.4.在全体学生中,会游泳的男生占457232.4.在会游泳的学生中,男生占32.454100 60在全体学生中,不会游泳的女生占(100-45)-54(1-60)33.4.【解2】画一个图非常清楚。【例4】某校四年级原有2个班,现在要重新编为3个班,将原一班的1/3与原二班的1/4组成新一班,将原一班的1/4与原二班的1/3组成新二班,余下的30人组成新三班。如果新一班的人数
7、比新二班的人数多10%,那么原一班有多少人? 【解】:原一班的1/3与原二班的1/4 + 原一班的1/4与原二班的1/3=7/12总人数,余下1-7/12=5/12,是30人,所以总人数=30/(5/12)=72人;72-30=42人,新一班与新二班的人数和为42人,新一班的人数比新二班的人数多10%,新一班人数:新二班人数=11:10,即原一班的(1/3-1/4)=1/12比原二班的1/12多2人,原一班比原二班共多122=24人,所以,原一班有24+(72-24)/2=48人。答:原一班有48人。2 比和比例 【例5】()一个长方形长与宽的比是14:5,如果长减少13厘米,宽增加13厘米,
8、则面积增加182平方厘米,那么原长方形面积是多少平方厘米?画出图便于解题:【解1】:BC的长:1821314(厘米),BD的长:141327(厘米),从图中看出AB长就是原长方形的宽,AD与AB的比是145,AB与BD的比是5(145)59,原长方形面积是4215630(平方厘米)。答:原长方形面积是630平方厘米。【解2】:设原长方形长为14x,宽为5x由图分析得方程(14x13)135x13182,9x27, x3。则原长方形面积 (143)(53)630(平方厘米)。【拓展】已知长方形的周长为346米,若边长分别增加2米,则面积增加多少平方米?设两边长分别为a、b,这样增加的面积我们可以
9、分为一个22的正方形,一个2a的长方形,一个2b的长方形,所以增加的面积就是2(a+b)+22=350平方米。【例6】()有正方形和长方形两种不同的纸板,正方形纸板总数与长方形纸板总数之比为25。现在将这些纸板全部用来拼成横式和竖式两种无盖纸盒,其中竖式盒由一块正方形纸板做底面,四块长方形纸板做侧面(左下图),横式盒由一块长方形纸板做底面,两块长方形和两块正方形纸板做侧面(右下图),那么做成的竖式纸盒与横式纸盒个数之比是多少?【解】43。设竖式纸盒有a个,横式纸盒有b个,则共用长方形纸板(4a3b)块,正方形纸板(a2b)块。根据题意有:(a2b)(4a3b)25,即5(a2b)2(4a3b)
10、,解得ab43。【例7】()某学校入学考试,参加的男生与女生人数之比是43.结果录取91人,其中男生与女生人数之比是85.未被录取的学生中,男生与女生人数之比是34.问报考的共有多少人?【解1】报考人数是119人,录取学生中男生:91=56人,女:91-56=35(人).先将未录取的人数之比3:4变成4:4,又有5642(人)未录取男生 4 3= 12(人),女生 16(人)。报考人数是 (56+ 12)+ (35 + 16)= 119(人)。【解2】(56+3x):(35+4x)=4:3 得:X=4未录取男生 4 3= 12(人),女生 16(人)。报考人数是 (56+ 12)+ (35 +
11、 16)= 119(人)。【例8】()幼儿园大班和中班共有32名男生,18名女生。已知大班男生数与女生数的比为5:3,中班中男生数与女生数的比为2:1,那么大班有女生多少名? 【解】方法一:鸡兔同笼思 路:由于男女生有比例关系,而且知道总数,所以我们可以用鸡兔同笼。解:假设18名女生全部是大班,则 大班男生数:女生数=5:3=30:18,即男生应有30人, 实际男生有32人,32-30=2,相差2个人; 中班男生数:女生数=2:1=6:3, 以3个中班女生换3个大班女生,每换一组可增加1个男生,需要换2组; 所以,大班女生有18-32=12个。 答:大班有女生12名。方法二:份数思 路 :可以
12、把中班女生数看作“1”份,那么中班男生数为2份从而大班中的男生数为322份,大班里的女生人数是181份根据题意有(322份):(181份)=5:3,只要求出1份的数目即可。解:设中班女生数看作“1”,(322份):(181份)=5:3,求出一份是6人所以大班的女生则有186=12人答:大班有女生12名。3 经济浓度问题【例9】()某商店进了一批笔记本,按 30的利润定价.当售出这批笔记本的 80后,为了尽早销完,商店把这批笔记本按定价的一半出售.问销完后商店实际获得的利润百分数是多少?【解】设这批笔记本的成本是“1”.因此定价是1(1+ 30)1.3.其中80的卖价是 1.380,20的卖价是
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 小升初 专项 训练 比例 百分数
限制150内