蛋白质组技术的研究进展.doc
《蛋白质组技术的研究进展.doc》由会员分享,可在线阅读,更多相关《蛋白质组技术的研究进展.doc(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流蛋白质组技术的研究进展.精品文档.蛋白质组技术的研究进展大规模基因组测序计划的实施已改变生命科学的重心,在相当短的时期内,一些原核生物和某些低等真核生物的基因组序列已被测定. 1995年,流感嗜血杆菌基因组序列首次被破译,在此后不到两年的时间,近50个细菌的基因组序列已被完成. 然而,这仅仅是理解有机物功能的一个起点. 在基因组时代,许多DNA序列信息仅提供相关基因组的结构和功能. 然而,对基因产物(mRNA和蛋白质)的理解是理解细胞生物学的一个不可缺少的部分. DNA序列信息不能预测:1)基因表达产物是否或何时被翻译;2)基因产物的相应含量
2、;3)翻译后修饰的程度;4)基因剔除或过表达的影响;5)遗留的小基因或7.0). 如果聚焦达到平衡状态,碱性蛋白会离开凝胶基质而丢失. 因此,在等电区域的迁移须在平衡状态之前完成,但很难控制. 3)IPG-DALT发展于80年代早期. 由于固相pH梯度(Immobilized pH gradient, IPG)21的出现解决了pH梯度不稳的问题. IPG通过immobiline共价偶联于丙烯酰胺产生固定的pH梯度,克服了IEF的缺点,从而达到高度的重复性. 目前可以精确制作线性、渐进性和S型曲线,范围或宽或窄的pH梯度. 新的酸性pH 35或碱性pH 611的IPG凝胶梯度联合商品化的pH 4
3、7的梯度可对蛋白质形成蛋白质组重叠群(proteomic contigs)从而有效分离13. 分离后的斑点检测(spot detection)亦很重要. 所采用的检测策略和分离后所采用的方法的相互作用是很重要的. 此外,还需考虑反应的线性、饱和阈/动态范围、敏感性、对细胞蛋白群的全体定量分析的适应性、可行性. 目前,没有一种蛋白染色覆盖广泛的浓度和PI及分离后分析技术. 银染已成为一种检测2-DE的流行方法,可检测少到25ng的蛋白,因此较考马斯亮蓝R-250敏感. 多数糖蛋白不能被考马斯亮蓝染色,一些有机染料不适于PVDF膜. 放射性标记不依赖其代谢的活性,并仅适于对合成的蛋白质检测2. 另
4、有一种改良的2-DE(差异凝胶电泳),即应用两种不同的染料荧光标记两个样品,使在同一凝胶上电泳后的凝胶图象为两个,避免了几种2-DE的比较,可在纳克级进行检测22. 较早期相比,2-DE有两个主要的进步:首先,极高的重复性使有机体的参考图谱,可通过Internet获得,来比较不同组织类型、不同状态的基因表达;其次,高加样量使得2-DE成为一项真正的制备型技术. 3 蛋白质组技术的支柱-鉴定技术(Identification) 如果目前分离蛋白质组的最好技术是2-DE,那么随之而来的挑战是数百数千个蛋白如何被鉴定. 在这里,我们不考虑传统的蛋白鉴定方法,如免疫印迹法、内肽的化学测序、已知或未知蛋
5、白的comigration分析,或者在一个有机体中有意义的基因的过表达. 并不是因为这些方法无效,而是因为它们通常耗时、耗力,不适合高流通量的筛选. 目前,所选用的技术包括对于蛋白鉴定的图象分析、微量测序;进一步对肽片段进行鉴定的氨基酸组分分析和与质谱相关的技术. (1) 图象分析技术(Image analysis). “满天星”式的2-DE图谱分析不能依靠本能的直觉,每一个图象上斑点的上调、下调及出现、消失,都可能在生理和病理状态下产生,必须依靠计算机为基础的数据处理,进行定量分析. 在一系列高质量的2-DE凝胶产生(低背景染色,高度的重复性)的前提下,图象分析包括斑点检测、背景消减、斑点配
6、比和数据库构建. 首先,采集图象通常所用的系统是电荷耦合CCD(charge coupled device)照相机;激光密度仪(laser densitometers)和Phospho或Fluoroimagers,对图象进行数字化. 并成为以象素(pixels)为基础的空间和网格. 其次,在图象灰度水平上过滤和变形,进行图象加工,以进行斑点检测. 利用Laplacian,Gaussian,DOG(difference of Gaussians) opreator使有意义的区域与背景分离,精确限定斑点的强度、面积、周长和方向. 图象分析检测的斑点须与肉眼观测的斑点一致. 在这一原则下,多数系统以
7、控制斑点的重心或最高峰来分析,边缘检测的软件可精确描述斑点外观,并进行边缘检测和邻近分析,以增加精确度. 通过阈值分析、边缘检测、销蚀和扩大斑点检测的基本工具还可恢复共迁移的斑点边界. 以PC机为基础的软件Phoretix-2D正挑战古老的Unix为基础的2-D分析软件包. 第三,一旦2-DE图象上的斑点被检测,许多图象需要分析比较、增加、消减或均值化. 由于在2-DE中出现100%的重复性是很困难的,由此凝胶间的蛋白质的配比对于图象分析系统是一个挑战. IPG技术的出现已使斑点配比变得容易. 因此,较大程度的相似性可通过斑点配比向量算法在长度和平行度观测. 用来配比的著名软件系统包括Ques
8、t,Lips,Hermes,Gemini等,计算机方法如相似性、聚类分析、等级分类和主要因素分析已被采用,而神经网络、子波变换和实用分析在未来可被采用2. 配比通常由一个人操作,其手工设定大约50个突出的斑点作为“路标”,进行交叉配比. 之后,扩展至整个胶. 例如:精确的PI和MW(分子量)的估计通过参考图上20个或更多的已知蛋白所组成的标准曲线来计算未知蛋白的PI和MW3. 在凝胶图象分析系统依据已知蛋白质的pI值产生PI网络,使得凝胶上其它蛋白的PI按此分配. 所估计的精确度大大依赖于所建网格的结构及标本的类型. 已知的未被修饰的大蛋白应该作为标志,变性的修饰的蛋白的PI估计约在0.25个
9、单位. 同理,已知蛋白的理论分子量可以从数据库中计算,利用产生的表观分子量的网格来估计蛋白的分子量. 未被修饰的小蛋白的错误率大约30%,而翻译后蛋白的出入更大. 故需联合其他的技术完成鉴定18. (2) 微量测序(microsequencing). 蛋白质的微量测序已成为蛋白质分析和鉴定的基石,可以提供足够的信息. 尽管氨基酸组分分析和肽质指纹谱(PMF)可鉴定由2-DE分离的蛋白,但最普通的N-末端Edman降解仍然是进行鉴定的主要技术. 目前已实现蛋白质微量测序的自动化. 首先使经凝胶分离的蛋白质直接印迹在PVDF膜或玻璃纤维膜上,染色、切割,然后直接置于测序仪中,可用于subpicom
10、ole水平的蛋白质的鉴定2. 但有几点需注意:Edman降解很缓慢,序列以每40 min 1个氨基酸的速率产生;与质谱相比,Edman降解消耗大;试剂昂贵,每个氨基酸花费34$. 这都说明泛化的Edman降解蛋白质不适合分析成百上千的蛋白质. 然而,如果在一个凝胶上仅有几个有意义的蛋白质,或者如果其他技术无法测定而克隆其基因是必需的,则需要进行泛化的Edman降解测序. 近来,应用自动化的Edman降解可产生短的N-末端序列标签,这是将质谱的序列标签概念用于Edman降解,业已成为一种强有力的蛋白质鉴定. 当对Edman的硬件进行简单改进,以迅速产生N-末端序列标签达1020个/d,序列检签将
11、适于在较小的蛋白质组中进行鉴定.若联合其他的蛋白质属性,如氨基酸组分分析、肽质质量、表现蛋白质分子量、等电点,可以更加可信地鉴定蛋白质. 选择BLAST程序,可与数据库相配比18. 目前,采用一种Tagldent的检索程序,还可以进行种间比较鉴定,又提高了其在蛋白质组研究中的作用23. (3) 与质谱(mass spectrometry)相关的技术. 质谱已成为连接蛋白质与基因的重要技术,开启了大规模自动化的蛋白质鉴定之门. 用来分析蛋白质或多肽的质谱有两个主要的部分,1)样品入机的离子源,2)测量被介入离子的分子量的装置. 首先是基质辅助激光解吸附电离飞行时间质谱(MALDI-TOF)为一脉
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 蛋白质 技术 研究进展
限制150内