完全平方公式变形的应用练习题-2(转摘).doc
《完全平方公式变形的应用练习题-2(转摘).doc》由会员分享,可在线阅读,更多相关《完全平方公式变形的应用练习题-2(转摘).doc(40页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、Four short words sum up what has lifted most successful individuals above the crowd: a little bit more.-author-date完全平方公式变形的应用练习题-2(转摘)完全平方公式变形的应用乘法公式的拓展及常见题型整理一公式拓展:拓展一: 拓展二: 拓展三:拓展四:杨辉三角形 拓展五: 立方和与立方差 二常见题型:(一)公式倍比例题:已知=4,求。如果,那么的值是 ,则= 已知= (二)公式组合例题:已知(a+b)2=7,(a-b)2=3, 求值: (1)a2+b2 (2)ab若则_,_设(5
2、a3b)2=(5a3b)2A,则A= 若,则a为 如果,那么M等于 已知(a+b)2=m,(ab)2=n,则ab等于 若,则N的代数式是 已知求的值为 。已知实数a,b,c,d满足,求(三)整体代入例1:,求代数式的值。例2:已知a= x20,b=x19,c=x21,求a2b2c2abbcac的值若,则= 若,则= 若,则= 已知a2b2=6ab且ab0,求 的值为 已知,则代数式的值是 (四)步步为营例题:3(2+1)(2+1)(2+1)(+1)6(7+1)(7+1)(7+1)+1 (五)分类配方例题:已知,求的值。已知:x+y+z-2x+4y-6z+14=0,则x+y+z的值为 。已知x+
3、y-6x-2y+10=0,则的值为 。已知x2+y2-2x+2y+2=0,求代数式的值为 . 若,x,y均为有理数,求的值为 。已知a2+b2+6a-4b+13=0,求(a+b)2的值为 说理:试说明不论x,y取什么有理数,多项式x2+y2-2x+2y+3的值总是正数. (六)首尾互倒 例1:已知 例2:已知a27a10求、和的值;已知,求= = 若x2 x1=0,求 的值为 如果,那么= 2、已知,那么=_已知,则的值是 若 且0a1,求a 的值是 已知a23a10求和a 和的值为 已知,求= = 已知a27a10求、和的值;(七)知二求一例题:已知,求: 已知,则_ 若a2+2a=1则(a
4、+1)2=_.若7,a+b=5,则ab= 若7,ab =5,则a+b= 若x2+y2=12,xy=4,则(x-y)2=_.7,a-b=5,则ab= 若3,ab =-4,则a-b= 已知:a+b=7,ab=-12,求 a2+b2= a2-ab+b2= (a-b)2= 已知ab=3,a3b3=9,则ab= ,a2+b2= ,a-b= 乘法公式应用与拓展【基础知识概述】一、基本公式:平方差公式:(a+b)(a-b)=ab完全平方公式:(a+b)=a+2ab+b (a-b)=a-2ab+b变形公式:(1)(2)(3) (4) 二、思想方法: a、b可以是数,可以是某个式子; 要有整体观念,即把某一个式
5、子看成a或b,再用公式。 注意公式的逆用。 0。 用公式的变形形式。三、典型问题分析:1、顺用公式:例1、计算下列各题: 3(2+1)(2+1)(2+1)(+1)+1 2、逆用公式:例2. 1949-1950+1951-1952+2011-2012 1.2345+0.7655+2.4690.7655 【变式练习】填空题: = +=( 6x2+ax+121是一个完全平方式,则a为( ) A22 B22 C22 D03、配方法:例3已知:x+y+4x-2y+5=0,求x+y的值。【变式练习】已知x+y-6x-2y+10=0,求的值。已知:x+y+z-2x+4y-6z+14=0,求:x+y+z的值。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 完全 平方 公式 变形 应用 练习题 转摘
限制150内