高中数学实践研修成果 (4).doc
《高中数学实践研修成果 (4).doc》由会员分享,可在线阅读,更多相关《高中数学实践研修成果 (4).doc(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流高中数学实践研修成果 (4).精品文档.高中数学实践研修成果 三维目标是指知识与技能目标、过程与方法目标、情感态度与价值观目标。要实施三维目标:一重视数学基本知识,掌握数学基本技能。高中数学三维目标的核心目标是知识和技能目标,让学生掌握基础的数学知识和技能是数学课堂教育的一个最重要也是最常规的任务。教师要通过各种方式完成或达到新课程标准的要求,同时也要注意学生能力的发展、过程的体验和情感的提升。二注重“过程与方法”的实施与落实高中数学新课程标准指出:“数学探究即数学探究性课题学习,是指学生围绕某个数学问题,自主探究、合作学习的过程。这个过程包
2、括:观察分析数学事实,提出有意义的数学问题,猜测、探求适当的数学结论或规律,给出解释或证明”。以高中必修一中函数的定义域为例,很多学生认为定义域是最没有用的,但是事实上函数的定义域是解函数题目的关键。1.函数关系式与定义域函数关系式包括定义域和对应法则,所以在求函数的关系式时必须要考虑所求函数关系式的定义域,否则所求函数关系式可能是错误。如:例1:某单位计划建筑一矩形围墙,现有材料可筑墙的总长度为100m,求矩形的面积S与矩形长x的函数关系式? 解:设矩形的长为x米,则宽为(50x)米,由题意得: 故函数关系式为:如果解题到此为止,则本题的函数关系式还欠完整,缺少自变量的范围。也就说学生的解题
3、思路不够严密。因为当自变量取负数或不小于50的数时,S的值是负数,即矩形的面积为负数,这与实际问题相矛盾,所以还应补上自变量的范围: 即:函数关系式为: ()这个例子说明,在用函数方法解决实际问题时,必须要注意到函数定义域的取值范围对实际问题的影响。若考虑不到这一点,就体现出学生思维缺乏严密性。若注意到定义域的变化,就说明学生的解题思维过程体现出较好思维的严密性。2.函数最值与定义域函数的最值是指函数在给定的定义域区间上能否取到最大(小)值的问题。如果不注意定义域,将会导致最值的错误。如:例2:求函数在2,5上的最值 解: 当时,初看结论,本题似乎没有最大值,只有最小值。产生这种错误的根源在于
4、学生是按照求二次函数最值的思路,而没有注意到已知条件发生变化。这是思维呆板性的一种表现,也说明学生思维缺乏灵活性。其实以上结论只是对二次函数在R上适用,而在指定的定义域区间上,它的最值应分如下情况: 当时,在上单调递增函数; 当时,在上单调递减函数; 当时,在上最值情况是: 即最大值是中最大的一个值。故本题还要继续做下去: 函数在2,5上的最小值是 4,最大值是12 这个例子说明,在函数定义域受到限制时,若能注意定义域的取值范围对函数最值的影响,并在解题过程中加以注意,便体现出学生思维的灵活性。3.函数值域与定义域函数的值域是该函数全体函数值的集合,当定义域和对应法则确定,函数值也随之而定。因
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学实践研修成果 4 高中数学 实践 研修 成果
限制150内