高考文科数学二轮专题复习讲义点、直线、平面之间的位置关系.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《高考文科数学二轮专题复习讲义点、直线、平面之间的位置关系.doc》由会员分享,可在线阅读,更多相关《高考文科数学二轮专题复习讲义点、直线、平面之间的位置关系.doc(16页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第2讲点、直线、平面之间的位置关系 考点1点、线、面的位置关系判断空间点、线、面位置关系,主要依赖四个公理、平行关系和垂直关系的有关定义及定理,具体处理时可以构建长方体或三棱锥等模型,把要考查的点、线、面融入模型中,判断会简洁明了如要否定一个结论,只需找到一个反例就可以例1(1)2019全国卷设,为两个平面,则的充要条件是()A内有无数条直线与平行B内有两条相交直线与平行C,平行于同一条直线D,垂直于同一平面(2)2019全国卷如图,点N为正方形ABCD的中心,ECD为正三角形,平面ECD平面ABCD,M是线段ED的中点,则()ABMEN,且直线BM,EN是相交直线BBMEN,且直线BM,EN
2、是相交直线CBMEN,且直线BM,EN是异面直线DBMEN,且直线BM,EN是异面直线【解析】(1)本题主要考查直线与平面、平面与平面的位置关系,意在考查考生的空间想象能力、逻辑思维能力,考查的核心素养是数学抽象、逻辑推理、直观想象对于A,内有无数条直线与平行,当这无数条直线互相平行时,与可能相交,所以A不正确;对于B,根据两平面平行的判定定理与性质知,B正确;对于C,平行于同一条直线的两个平面可能相交,也可能平行,所以C不正确;对于D,垂直于同一平面的两个平面可能相交,也可能平行,如长方体的相邻两个侧面都垂直于底面,但它们是相交的,所以D不正确综上可知选B.(2)本题主要考查空间线线位置关系
3、,考查考生的空间想象能力,考查的核心素养是逻辑推理、直观想象、数学运算取CD的中点O,连接ON,EO,因为ECD为正三角形,所以EOCD,又平面ECD平面ABCD,平面ECD平面ABCDCD,所以EO平面ABCD.设正方形ABCD的边长为2,则EO,ON1,所以EN2EO2ON24,得EN2.过M作CD的垂线,垂足为P,连接BP,则MP,CP,所以BM2MP2BP222227,得BM,所以BMEN.连接BD,BE,因为四边形ABCD为正方形,所以N为BD的中点,即EN,MB均在平面BDE内,所以直线BM,EN是相交直线,选B.【答案】(1)B(2)B判断空间位置关系的两种方法(1)借助空间线面
4、平行、面面平行、线面垂直、面面垂直的判定定理和性质定理进行判断(2)借助空间几何模型,如从长方体模型、四面体模型等模型中观察线面位置关系,结合有关定理,进行肯定或否定.对接训练12019浙江绍兴一中模拟对于空间中的两条直线m,n和一个平面,下列命题中为真命题的是()A若m,n,则mnB若m,n,则mnC若m,n,则mn D若m,n,则mn解析:对于A,直线m,n可能平行、异面或相交,故A错误;对于B,直线m,n可能平行,也可能异面,故B错误;对于C,m与n垂直而非平行,故C错误;对于D,垂直于同一平面的两直线平行,故D正确答案:D2.2019陕西西北工大附中调考如图,四边形EFGH为四面体AB
5、CD的一个截面,若,则与平面EFGH平行的直线有()A0条 B1条C2条 D3条解析:,EFAB.又EF平面EFGH,AB平面EFGH,AB平面EFGH.同理,由,可证CD平面EFGH.与平面EFGH平行的直线有2条故选C.答案:C 考点2空间中平行、垂直关系1直线、平面平行的判定及其性质(1)线面平行的判定定理:a,b,aba.(2)线面平行的性质定理:a,a,bab.(3)面面平行的判定定理:a,b,abP,a,b.(4)面面平行的性质定理:,a,bab.2直线、平面垂直的判定及其性质(1)线面垂直的判定定理:m,n,mnP,lm,lnl.(2)线面垂直的性质定理:a,bab.(3)面面垂
6、直的判定定理:a,a.(4)面面垂直的性质定理:,l,a,ala.例22019全国卷如图,直四棱柱ABCDA1B1C1D1的底面是菱形,AA14,AB2,BAD60,E,M,N分别是BC,BB1,A1D的中点(1)证明:MN平面C1DE;(2)求点C到平面C1DE的距离【解析】本题考查了线面平行、垂直的判定和点到平面的距离,通过平行、垂直的证明,考查了学生的空间想象力,体现了直观想象的核心素养(1)证明:连接B1C,ME.因为M,E分别为BB1,BC的中点,所以MEB1C,且MEB1C.又因为N为A1D的中点,所以NDA1D.由题设知A1B1綊DC,可得B1C綊A1D,故ME綊ND,因此四边形
7、MNDE为平行四边形,MNED.又MN平面C1DE,所以MN平面C1DE.(2)过C作C1E的垂线,垂足为H.由已知可得DEBC,DEC1C,所以DE平面C1CE,故DECH.从而CH平面C1DE,故CH的长即为C到平面C1DE的距离由已知可得CE1,C1C4,所以C1E,故CH.从而点C到平面C1DE的距离为.1证明线线平行的4种常用方法(1)利用平行公理,即证两直线同时和第三条直线平行;(2)利用平行四边形进行平行转换;(3)利用三角形的中位线定理证线线平行;(4)利用线面平行、面面平行的性质定理进行平行转换2证明线线垂直的3种常用方法(1)利用等腰三角形底边中线即高线的性质;(2)勾股定
8、理;(3)线面垂直的性质:即要证两线垂直,只需证明一线垂直于另一线所在的平面即可,l,ala.对接训练32019全国卷如图,长方体ABCDA1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BEEC1.(1)证明:BE平面EB1C1;(2)若AEA1E,AB3,求四棱锥EBB1C1C的体积解析:本题考查了长方体的性质、直线与平面垂直的判定与性质和锥体的体积,考查了空间想象能力,主要体现了逻辑推理和直观想象的核心素养(1)证明:由已知得B1C1平面ABB1A1,BE平面ABB1A1,故B1C1BE.又BEEC1,B1C1EC1C1,所以BE平面EB1C1.(2)由(1)知BEB190.由题
9、设知RtABERtA1B1E,所以AEBA1EB145,故AEAB3,AA12AE6.作EFBB1,垂足为F,则EF平面BB1C1C,且EFAB3.所以,四棱锥EBB1C1C的体积V36318. 考点3平面图形的折叠问题1画好两图:翻折之前的平面图形与翻折之后形成的几何体的直观图2把握关系:即比较翻折前后的图形,准确把握平面图形翻折前后的线线关系,哪些平行与垂直的关系不变,哪些平行与垂直的关系发生变化,这是准确把握几何体的结构特征,进行空间线面关系逻辑推理的基础3准确定量:即根据平面图形翻折的要求,把平面图形中的相关数量转化为空间几何体的数字特征,这是准确进行计算的基础例32018全国卷如图,
10、在平行四边形ABCM中,ABAC3,ACM90.以AC为折痕将ACM折起,使点M到达点D的位置,且ABDA.(1)证明:平面ACD平面ABC;(2)Q为线段AD上一点,P为线段BC上一点,且BPDQDA,求三棱锥Q ABP的体积【解析】(1)证明:由已知可得,BAC90,即BAAC.又BAAD,所以AB平面ACD.又AB平面ABC,所以平面ACD平面ABC.(2)解:由已知可得,DCCMAB3,DA3.又BPDQDA,所以BP2.如图,过点Q作QEAC,垂足为E,则QE綊DC.由已知及(1)可得,DC平面ABC,所以QE平面ABC,QE1.因此,三棱锥Q ABP的体积为VQ ABPSABPQE
11、32sin 4511.平面图形翻折问题的求解方法(1)解决与折叠有关的问题的关键是搞清折叠前后的变化量和不变量,一般情况下,线段的长度是不变量,而位置关系往往会发生变化,抓住不变量是解决问题的突破口(2)在解决问题时,要综合考虑折叠前后的图形,既要分析折叠后的图形,也要分析折叠前的图形.对接训练42019湖南省湘东六校联考如图,将矩形ABCD沿对角线AC折起,使得平面ABD平面ABC.(1)求证:AD平面BCD;(2)当AB,AD1时,求点B到平面ADC的距离解析:(1)BCAB,平面ABD平面ABC,平面ABD平面ABCAB,BC平面ABD,AD平面ABD,BCAD,又ADDC,BCDCC,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考 文科 数学 二轮 专题 复习 讲义 直线 平面 之间 位置 关系
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内