全国高中数学联赛试题专题分类汇编三角函数.doc
《全国高中数学联赛试题专题分类汇编三角函数.doc》由会员分享,可在线阅读,更多相关《全国高中数学联赛试题专题分类汇编三角函数.doc(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、1981年2019年全国高中数学联赛试题分类汇编三角函数部分2019A 6、对任意闭区间,用表示函数在上的最大值若正数满足,则的值为 答案:或解析:若,,与条件不符,所以,此时,于是存在非负整数,使得,且处至少有一处取到等号。当时,得或,经检验得或均满足条件;当时,由于,故不存在满足的。综上或。2018B 5、设满足,则的值为 答案: 解析:由两角差的正切公式可知,即可得2017A 2、若实数满足,则的取值范围为 答案: 解析:由得,得,所以,可求得其范围为。2016A 6、设函数,其中是一个正整数。若对任意实数,均有,则的最小值为 答案:16解析:由条件知, 其中当且仅当时,取到最大值根据条
2、件知,任意一个长为1的开区间至少包含一个最大值点,从而,即反之,当时,任意一个开区间均包含的一个完整周期,此时成立综上可知,正整数的最小值为2015A 2、若实数满足,则的值为 答案:解析:由条件知,反复利用此结论,并注意到,得2015A 7、设是正实数,若存在,使得,则的取值范围是 答案:解析:由知,而,故题目条件等价于:存在整数,使得 当时,区间的长度不小于,故必存在满足式当时,注意到,故仅需考虑如下几种情况: (i) ,此时且无解;(ii) ,此时;(iii) ,此时,得综合(i)、(ii)、(iii),并注意到亦满足条件,可知2015B 3、某房间的室温(单位:摄氏度)与时间(单位:小
3、时)的函数关系为:,其中为正实数,如果该房间的最大温差为10摄氏度,则的最大值为 答案: 解析:由辅助角公式:,其中满足条件,则函数的值域是,室内最大温差为,得 故,等号成立当且仅当2014A 10、(本题满分20分)数列满足,()求正整数,使得。解析:由已知条件可知,对任意正整数,且 由于,故。由得,故即。 10分因此,(利用)由,得。 20分2014B 10、(本题满分20分)设是多项式方程的三个根.已知都落在区间之中,求这三个根的整数部分;(5分)证明:。(15分)解析:设,则它至多有三个实根。由于,我们可以看到三个区间,的端点函数的值改变符号,所有三个根分别落在这三个区间的内部,这样便
4、可以作为满足条件的三个根的近似值。(也可以写成)假定,由于,所以,同理,得,从而和都落在区间之中,所以我们只需证明:。由正切公式知,等价于,即等价于,由根与系数关系知,显然上式是成立的。这样就完成了证明。2008AB13、已知函数的图像与直线()有且仅有三个交点,交点的横坐标的最大值为,求证:。证明:的图象与直线 的三个交点如答13图所示,且在内相切,其切点为,由于,所以,即因此 2007*4、设函数。若实数使得对任意的实数恒成立,则的值等于 A. B. C. D. 答案:C解析:令,则对任意的,都有,于是取,则对任意的,由此得。一般地,由题设可得,其中且,于是可化为,即,所以。由已知条件,上
5、式对任意恒成立,故必有,若,则由(1)知,显然不满足(3)式,故。所以,由(2)知,故或()。当时,则(1)、(3)两式矛盾。故(),。由(1)、(3)知,所以。2007*11、已知函数(),则的最小值为 答案:解析:解:实际上,设,则,在上是增函数,在上是减函数,且的图像关于直线对称,则对任意,存在,使。于是,而在上是减函数,所以,即在上的最小值是。2007*15、(本题满分20分)设函数对所有的实数都满足,求证:存在个函数()满足:对,都是偶函数,且对任意的实数,有;对任意的实数,有。证明:记,则,且是偶函数,是奇函数,对任意的,。令, ,其中为任意整数。容易验证,是偶函数,且对任意的,。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 全国 高中数学 联赛 试题 专题 分类 汇编 三角函数
限制150内