人教A版高中数学必修一课时作业第一课时函数的单调性.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《人教A版高中数学必修一课时作业第一课时函数的单调性.doc》由会员分享,可在线阅读,更多相关《人教A版高中数学必修一课时作业第一课时函数的单调性.doc(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、1.3函数的基本性质1.3.1单调性与最大(小)值第一课时函数的单调性选题明细表知识点、方法题号函数单调性概念1,2,9函数单调性的判定、证明3函数单调性的应用4,5,6,7,8,10,11,12基础巩固1.下列说法中正确的有(A)若x1,x2I,当x1x2时,f(x1)f(x2),则y=f(x)在I上是增函数;函数y=x2在R上是增函数;函数y=-1x在定义域上是增函数;y=1x的单调递减区间是(-,0)(0,+).(A)0个(B)1个(C)2个(D)3个解析:由于中的x1,x2不是任意的,因此不正确;显然不正确.2.下列函数f(x)中,满足“对任意x1,x2(0,+),当 x1x2时,都有
2、f(x1)f(x2)”的是(C)(A)f(x)=x2-2x+3(B)f(x)=1x(C)f(x)=x+1 (D)f(x)=|x-1|解析:因为对任意x1,x2(0,+),当x1x2时,都有f(x1)f(x2),所以f(x)在(0,+)上为增函数,只有C选项符合题意.3.已知函数y=-mx和y=nx在(0,+)上都是增函数,则函数f(x)=mx+n在R上是(A)(A)减函数且f(0)0(B)增函数且f(0)0(D)增函数且f(0)0解析:因为y=-mx和y=nx在(0,+)都是增函数,所以m0,n0,f(x)=mx+n为减函数且f(0)=nf(2a)(B)f(a2)f(a)(C)f(a2+a)f
3、(a)(D)f(a2+1)0,所以a2+1a,又f(x)在(-,+)上是减函数,所以f(a2+1)f(a).5.若定义在R上的函数f(x)满足对任意的x1,x20,+)(x1x2),有f(x2)-f(x1)x2-x10,则(D)(A)f(3)f(2)f(4)(B)f(1)f(2)f(3)(C)f(2)f(1)f(3)(D)f(3)f(1)f(0)解析:若对任意的x1,x20,+)(x1x2),有f(x2)-f(x1)x2-x10,则函数f(x)在0,+)上单调递减,故f(3)f(1)f(0).6.函数y=|x|(1-x)在区间A上是增函数,那么区间A是(B)(A)(-,0)(B)0,12(C)
4、0,+)(D)(12,+)解析:y=|x|(1-x)=x(1-x),x0,-x(1-x),x0=-x2+x,x0,x2-x,x0=-(x-12)2+14,x0,(x-12)2-14,x0.画出函数的大致图象如图所示,由图易知原函数在0,12上单调递增.故A=0,12.7.(2018山东济宁高一期末)已知函数f(x)=4x2-kx-8,x5,20的图象上任意两点连线不平行于x轴,则k的取值范围是.解析:由题意,函数f(x)=4x2-kx-8在区间5,20上为单调函数,则由f(x)图象对称轴方程为x=k8知k85或k820,即k40或k160.答案:(-,40160,+)8.已知函数f(x)=x2
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教 高中数学 必修 课时 作业 第一 函数 调性
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内