因动点产生的平行四边形问题(中考压轴题).doc
《因动点产生的平行四边形问题(中考压轴题).doc》由会员分享,可在线阅读,更多相关《因动点产生的平行四边形问题(中考压轴题).doc(56页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、Four short words sum up what has lifted most successful individuals above the crowd: a little bit more.-author-date因动点产生的平行四边形问题(中考压轴题)因动点产生的平行四边形问题因动点产生的平行四边形问题例 1 2012年福州市中考第21题如图1,在RtABC中,C90,AC6,BC8,动点P从点A开始沿边AC向点C以每秒1个单位长度的速度运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,过点P作PD/BC,交AB于点D,联结PQ点P、Q分别从点A、C同时出发,
2、当其中一点到达端点时,另一点也随之停止运动,设运动的时间为t秒(t0)(1)直接用含t的代数式分别表示:QB_,PD_;(2)是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由,并探究如何改变点Q的速度(匀速运动),使四边形PDBQ在某一时刻为菱形,求点Q的速度;(3)如图2,在整个运动过程中,求出线段PQ的中点M所经过的路径长图1 图2动感体验请打开几何画板文件名“12福州21”,拖动左图中的点P运动,可以体验到,PQ的中点M的运动路径是一条线段拖动右图中的点Q运动,可以体验到,当PQ/AB时,四边形PDBQ为菱形请打开超级画板文件名“12福州21”,拖动点Q向上
3、运动,可以体验到,PQ的中点M的运动路径是一条线段点击动画按钮的左部,Q的速度变成1.07,可以体验到,当PQ/AB时,四边形PDBQ为菱形点击动画按钮的中部,Q的速度变成1.思路点拨1菱形PDBQ必须符合两个条件,点P在ABC的平分线上,PQ/AB先求出点P运动的时间t,再根据PQ/AB,对应线段成比例求CQ的长,从而求出点Q的速度2探究点M的路径,可以先取两个极端值画线段,再验证这条线段是不是点M的路径满分解答(1)QB82t,PD(2)如图3,作ABC的平分线交CA于P,过点P作PQ/AB交BC于Q,那么四边形PDBQ是菱形过点P作PEAB,垂足为E,那么BEBC8在RtABC中,AC6
4、,BC8,所以AB10 图3在RtAPE中,所以当PQ/AB时,即解得所以点Q的运动速度为(3)以C为原点建立直角坐标系如图4,当t0时,PQ的中点就是AC的中点E(3,0)如图5,当t4时,PQ的中点就是PB的中点F(1,4)直线EF的解析式是y2x6如图6,PQ的中点M的坐标可以表示为(,t)经验证,点M(,t)在直线EF上所以PQ的中点M的运动路径长就是线段EF的长,EF图4 图5 图6考点伸展第(3)题求点M的运动路径还有一种通用的方法是设二次函数:当t2时,PQ的中点为(2,2)设点M的运动路径的解析式为yax2bxc,代入E(3,0)、F(1,4)和(2,2),得 解得a0,b2,
5、c6所以点M的运动路径的解析式为y2x6例 2 2012年烟台市中考第26题如图1,在平面直角坐标系中,已知矩形ABCD的三个顶点B(1, 0)、C(3, 0)、D(3, 4)以A为顶点的抛物线yax2bxc过点C动点P从点A出发,沿线段AB向点B运动,同时动点Q从点C出发,沿线段CD向点D运动点P、Q的运动速度均为每秒1个单位,运动时间为t秒过点P作PEAB交AC于点E(1)直接写出点A的坐标,并求出抛物线的解析式;(2)过点E作EFAD于F,交抛物线于点G,当t为何值时,ACG的面积最大?最大值为多少?(3)在动点P、Q运动的过程中,当t为何值时,在矩形ABCD内(包括边界)存在点H,使以
6、C、Q、E、H为顶点的四边形为菱形?请直接写出t的值图1动感体验请打开几何画板文件名“12烟台26”,拖动点P在AB上运动,可以体验到,当P在AB的中点时,ACG的面积最大观察右图,我们构造了和CEQ中心对称的FQE和ECH,可以体验到,线段EQ的垂直平分线可以经过点C和F,线段CE的垂直平分线可以经过点Q和H,因此以C、Q、E、H为顶点的菱形有2个请打开超级画板文件名“12烟台26”,拖动点P在AB上运动,可以体验到,当P在AB的中点时,即t=2,ACG的面积取得最大值1观察CQ,EQ,EC的值,发现以C、Q、E、H为顶点的菱形有2个点击动画按钮的左部和中部,可得菱形的两种准确位置。思路点拨
7、1把ACG分割成以GE为公共底边的两个三角形,高的和等于AD2用含有t的式子把图形中能够表示的线段和点的坐标都表示出来3构造以C、Q、E、H为顶点的平行四边形,再用邻边相等列方程验证菱形是否存在满分解答(1)A(1, 4)因为抛物线的顶点为A,设抛物线的解析式为ya(x1)24,代入点C(3, 0),可得a1所以抛物线的解析式为y(x1)24x22x3(2)因为PE/BC,所以因此所以点E的横坐标为将代入抛物线的解析式,y(x1)24所以点G的纵坐标为于是得到因此所以当t1时,ACG面积的最大值为1(3)或考点伸展第(3)题的解题思路是这样的:因为FE/QC,FEQC,所以四边形FECQ是平行
8、四边形再构造点F关于PE轴对称的点H,那么四边形EHCQ也是平行四边形再根据FQCQ列关于t的方程,检验四边形FECQ是否为菱形,根据EQCQ列关于t的方程,检验四边形EHCQ是否为菱形,如图2,当FQCQ时,FQ2CQ2,因此整理,得解得,(舍去)如图3,当EQCQ时,EQ2CQ2,因此整理,得所以,(舍去)图2 图3例 3 2011年上海市中考第24题已知平面直角坐标系xOy(如图1),一次函数的图象与y轴交于点A,点M在正比例函数的图象上,且MOMA二次函数yx2bxc的图象经过点A、M(1)求线段AM的长;(2)求这个二次函数的解析式;(3)如果点B在y轴上,且位于点A下方,点C在上述
9、二次函数的图象上,点D在一次函数的图象上,且四边形ABCD是菱形,求点C的坐标图1动感体验请打开几何画板文件名“11上海24”,拖动点B在y轴上点A下方运动,四边形ABCD保持菱形的形状,可以体验到,菱形的顶点C有一次机会落在抛物线上思路点拨1本题最大的障碍是没有图形,准确画出两条直线是基本要求,抛物线可以不画出来,但是对抛物线的位置要心中有数2根据MOMA确定点M在OA的垂直平分线上,并且求得点M的坐标,是整个题目成败的一个决定性步骤3第(3)题求点C的坐标,先根据菱形的边长、直线的斜率,用待定字母m表示点C的坐标,再代入抛物线的解析式求待定的字母m满分解答(1)当x0时,所以点A的坐标为(
10、0,3),OA3如图2,因为MOMA,所以点M在OA的垂直平分线上,点M的纵坐标为将代入,得x1所以点M的坐标为因此(2)因为抛物线yx2bxc经过A(0,3)、M,所以解得,所以二次函数的解析式为(3)如图3,设四边形ABCD为菱形,过点A作AECD,垂足为E在RtADE中,设AE4m,DE3m,那么AD5m因此点C的坐标可以表示为(4m,32m)将点C(4m,32m)代入,得解得或者m0(舍去)因此点C的坐标为(2,2) 图2 图3考点伸展如果第(3)题中,把“四边形ABCD是菱形”改为“以A、B、C、D为顶点的四边形是菱形”,那么还存在另一种情况:如图4,点C的坐标为图4 例4 2011
11、年江西省中考第24题将抛物线c1:沿x轴翻折,得到抛物线c2,如图1所示(1)请直接写出抛物线c2的表达式;(2)现将抛物线c1向左平移m个单位长度,平移后得到新抛物线的顶点为M,与x轴的交点从左到右依次为A、B;将抛物线c2向右也平移m个单位长度,平移后得到新抛物线的顶点为N,与x轴的交点从左到右依次为D、E当B、D是线段AE的三等分点时,求m的值;在平移过程中,是否存在以点A、N、E、M为顶点的四边形是矩形的情形?若存在,请求出此时m的值;若不存在,请说明理由图1动感体验请打开几何画板文件名“11江西24”,拖动点M向左平移,可以体验到,四边形ANEM可以成为矩形,此时B、D重合在原点观察
12、B、D的位置关系,可以体验到,B、D是线段AE的三等分点,存在两种情况思路点拨1把A、B、D、E、M、N六个点起始位置的坐标罗列出来,用m的式子把这六个点平移过程中的坐标罗列出来2B、D是线段AE的三等分点,分两种情况讨论,按照AB与AE的大小写出等量关系列关于m的方程3根据矩形的对角线相等列方程满分解答(1)抛物线c2的表达式为(2)抛物线c1:与x轴的两个交点为(1,0)、(1,0),顶点为抛物线c2:与x轴的两个交点也为(1,0)、(1,0),顶点为抛物线c1向左平移m个单位长度后,顶点M的坐标为,与x轴的两个交点为、,AB2抛物线c2向右平移m个单位长度后,顶点N的坐标为,与x轴的两个
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 产生 平行四边形 问题 中考 压轴
限制150内