考研数学公式(word版,全面).doc
《考研数学公式(word版,全面).doc》由会员分享,可在线阅读,更多相关《考研数学公式(word版,全面).doc(26页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流考研数学公式(word版,全面).精品文档.高等数学公式导数公式:基本积分表:三角函数的有理式积分:一些初等函数: 两个重要极限:三角函数公式:诱导公式: 函数角Asincostgctg-sincos-tg-ctg90-cossinctgtg90+cos-sin-ctg-tg180-sin-cos-tg-ctg180+-sin-costgctg270-cos-sinctgtg270+-cossin-ctg-tg360-sincos-tg-ctg360+sincostgctg和差角公式: 和差化积公式:倍角公式:半角公式:正弦定理: 余弦定理:
2、 反三角函数性质:高阶导数公式莱布尼兹(Leibniz)公式:中值定理与导数应用:曲率:定积分的近似计算:定积分应用相关公式:空间解析几何和向量代数:多元函数微分法及应用微分法在几何上的应用:方向导数与梯度:多元函数的极值及其求法:重积分及其应用:柱面坐标和球面坐标:曲线积分:曲面积分:高斯公式:斯托克斯公式曲线积分与曲面积分的关系:常数项级数:级数审敛法:绝对收敛与条件收敛:幂级数:函数展开成幂级数:一些函数展开成幂级数:欧拉公式:三角级数:傅立叶级数:周期为的周期函数的傅立叶级数:微分方程的相关概念:一阶线性微分方程:全微分方程:二阶微分方程:二阶常系数齐次线性微分方程及其解法:(*)式的
3、通解两个不相等实根两个相等实根一对共轭复根二阶常系数非齐次线性微分方程概率公式整理1随机事件及其概率吸收律: 反演律: 2概率的定义及其计算若 对任意两个事件A, B, 有 加法公式:对任意两个事件A, B, 有 3条件概率 乘法公式全概率公式Bayes公式4随机变量及其分布分布函数计算5离散型随机变量(1) 0 1 分布(2) 二项分布 若P ( A ) = p * Possion定理有 (3) Poisson 分布 6连续型随机变量(1) 均匀分布 (2) 指数分布 (3) 正态分布 N (m , s 2 )* N (0,1) 标准正态分布7.多维随机变量及其分布二维随机变量( X ,Y
4、)的分布函数边缘分布函数与边缘密度函数8. 连续型二维随机变量(1)区域G 上的均匀分布,U ( G )(2) 二维正态分布9. 二维随机变量的 条件分布10. 随机变量的数字特征数学期望随机变量函数的数学期望X 的 k 阶原点矩X 的 k 阶绝对原点矩X 的 k 阶中心矩X 的 方差X ,Y 的 k + l 阶混合原点矩X ,Y 的 k + l 阶混合中心矩X ,Y 的 二阶混合原点矩X ,Y 的二阶混合中心矩 X ,Y 的协方差X ,Y 的相关系数X 的方差D (X ) = E (X - E(X)2) 协方差相关系数线性代数部分 梳理:条理化,给出一个系统的,有内在有机结构的理论体系。 沟
5、通:突出各部分内容间的联系。 充实提高:围绕考试要求,介绍一些一般教材上没有的结果,教给大家常见问题的实用而简捷的方法。 大家要有这样的思想准备:发现我的讲解在体系上和你以前学习的有所不同,有的方法是你不知道的。但是我相信,只要你对它们了解了,掌握了,会提高你的解题能力的。基本运算 或。转置值不变逆值变 ,3阶矩阵有关乘法的基本运算 线性性质 , 结合律 不一定成立!与数的乘法的不同之处 不一定成立!无交换律 因式分解障碍是交换性 一个矩阵的每个多项式可以因式分解,例如 无消去律(矩阵和矩阵相乘) 当时或 由和由时(无左消去律)特别的 设可逆,则有消去律。 左消去律:。 右消去律:。 如果列满
6、秩,则有左消去律,即可逆矩阵的性质 i)当可逆时, 也可逆,且。 也可逆,且。 数,也可逆,。ii),是两个阶可逆矩阵也可逆,且。 推论:设,是两个阶矩阵,则 命题:初等矩阵都可逆,且 命题:准对角矩阵可逆每个都可逆,记伴随矩阵的基本性质: 当可逆时, 得, (求逆矩阵的伴随矩阵法) 且得: 伴随矩阵的其他性质 。 时, 关于矩阵右上肩记号:,* i) 任何两个的次序可交换, 如, 等 ii) , 但不一定成立!线性表示 有解 有解 有解,即可用A的列向量组表示 则。则存在矩阵,使得 线性表示关系有传递性 当, 则。 等价关系:如果与互相可表示 记作。线性相关 ,单个向量, 相关 ,相关对应分
7、量成比例 相关 向量个数=维数,则线性相(无)关 ,有非零解 如果,则一定相关 的方程个数未知数个数 如果无关,则它的每一个部分组都无关 如果无关,而相关,则 证明:设不全为0,使得 则其中,否则不全为0,与条件无关矛盾。于是。 当时,表示方式唯一无关 (表示方式不唯一相关) 若,并且,则一定线性相关。 证明:记,则存在矩阵,使得 。 有个方程,个未知数,有非零解,。 则,即也是的非零解,从而线性相关。各性质的逆否形式 如果无关,则。 如果有相关的部分组,则它自己一定也相关。 如果无关,而,则无关。 如果,无关,则。 推论:若两个无关向量组与等价,则。极大无关组一个线性无关部分组,若等于秩,就
8、一定是极大无关组 无关 另一种说法: 取的一个极大无关组 也是的极大无关组相关。 证明:相关。 可用唯一表示矩阵的秩的简单性质 行满秩: 列满秩: 阶矩阵满秩: 满秩的行(列)向量组线性无关 可逆 只有零解,唯一解。矩阵在运算中秩的变化初等变换保持矩阵的秩 时,可逆时, 弱化条件:如果列满秩,则 证:下面证与同解。 是的解 是的解可逆时, 若,则(的列数,的行数) 列满秩时 行满秩时解的性质 1的解的性质。 如果是一组解,则它们的任意线性组合一定也是解。 2 如果是的一组解,则 也是的解 是的解 特别的: 当是的两个解时,是的解 如果是的解,则维向量也是的解是的解。解的情况判别 方程:,即 有
9、解 无解 唯一解 无穷多解 方程个数: 当时,有解 当时,不会是唯一解 对于齐次线性方程组, 只有零解(即列满秩) (有非零解)特征值特征向量 是的特征值是的特征多项式的根。 两种特殊情形: (1)是上(下)三角矩阵,对角矩阵时,特征值即对角线上的元素。 (2)时:的特征值为特征值的性质 命题:阶矩阵的特征值的重数 命题:设的特征值为,则 命题:设是的特征向量,特征值为,即,则 对于的每个多项式, 当可逆时, 命题:设的特征值为,则 的特征值为 可逆时,的特征值为 的特征值为 的特征值也是特征值的应用 求行列式 判别可逆性 是的特征值不可逆 可逆不是的特征值。 当时,如果,则可逆 若是的特征值
10、,则是的特征值。 不是的特征值可逆。n阶矩阵的相似关系 当时,而时,。 相似关系有i)对称性: ,则 ii)有传递性:,则 ,则 命题 当时,和有许多相同的性质 ,的特征多项式相同,从而特征值完全一致。 与的特征向量的关系:是的属于的特征向量是的属于的特征向量。正定二次型与正定矩阵性质与判别可逆线性变换替换保持正定性变为,则它们同时正定或同时不正定 ,则,同时正定,同时不正定。 例如。如果正定,则对每个 (可逆,!) 我们给出关于正定的以下性质 正定 存在实可逆矩阵,。 的正惯性指数。 的特征值全大于。 的每个顺序主子式全大于。 判断正定的三种方法: 顺序主子式法。 特征值法。 定义法。基本概
11、念 对称矩阵。 反对称矩阵。简单阶梯形矩阵:台角位置的元素都为1 ,台角正上方的元素都为0。 如果是一个阶矩阵,是阶梯形矩阵是上三角矩阵,反之不一定 矩阵消元法:(解的情况) 写出增广矩阵,用初等行变换化为阶梯形矩阵。 用判别解的情况。 i)如果最下面的非零行为,则无解,否则有解。 ii)如果有解,记是的非零行数,则 时唯一解。 时无穷多解。 iii)唯一解求解的方法(初等变换法) 去掉的零行,得,它是矩阵,是阶梯形矩阵,从而是上三角矩阵。 则都不为。 就是解。一个阶行列式的值: 是项的代数和 每一项是个元素的乘积,它们共有项 其中是的一个全排列。 前面乘的应为 的逆序数代数余子式 为的余子式
12、。 定理:一个行列式的值等于它的某一行(列),各元素与各自代数余子式乘积之和。 一行(列)的元素乘上另一行(列)的相应元素代数余子式之和为。 范德蒙行列式 个 乘法相关 的位元素是的第行和的第列对应元素乘积之和。 乘积矩阵的列向量与行向量 (1)设矩阵,维列向量,则 矩阵乘法应用于方程组 方程组的矩阵形式 方程组的向量形式 (2)设, 的第个列向量是的列向量组的线性组合,组合系数是的第个列向量的各分量。 的第个行向量是的行向量组的线性组合,组合系数是的第个行向量的各分量。 矩阵分解 当矩阵的每个列向量都是的列向量的线性组合时,可把分解为与一个矩阵的乘积特别的在有关对角矩阵的乘法中的若干问题 对
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 考研 数学公式 word 全面
限制150内