高中数学专项排列组合题库(带答案).doc
《高中数学专项排列组合题库(带答案).doc》由会员分享,可在线阅读,更多相关《高中数学专项排列组合题库(带答案).doc(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流高中数学专项排列组合题库(带答案).精品文档.排列组合一、选择题1.(2010广东卷理)2010年广州亚运会组委会要从小张、小赵、小李、小罗、小王五名志愿者中选派四人分别从事翻译、导游、礼仪、司机四项不同工作,若其中小张和小赵只能从事前两项工作,其余三人均能从事这四项工作,则不同的选派方案共有 A. 36种 B. 12种 C. 18种 D. 48种【解析】分两类:若小张或小赵入选,则有选法;若小张、小赵都入选,则有选法,共有选法36种,选A. 2.(2010北京卷文)用数字1,2,3,4,5组成的无重复数字的四位偶数的个数为 ( )A8B24
2、C48D120【答案】C.w【解析】本题主要考查排列组合知识以及分步计数原理知识. 属于基础知识、基本运算的考查.2和4排在末位时,共有种排法,其余三位数从余下的四个数中任取三个有种排法,于是由分步计数原理,符合题意的偶数共有(个).故选C.3(2010北京卷理)用0到9这10个数字,可以组成没有重复数字的三位偶数的个数为( ) A324 B328 C360 D648【答案】B【解析】本题主要考查排列组合知识以及分类计数原理和分步计数原理知识. 属于基础知识、基本运算的考查. 首先应考虑“0”是特殊元素,当0排在末位时,有(个), 当0不排在末位时,有(个), 于是由分类计数原理,得符合题意的
3、偶数共有(个).故选B.4.(2010全国卷文)甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有(A)6种 (B)12种 (C)24种 (D)30种 答案:C解析:本题考查分类与分步原理及组合公式的运用,可先求出所有两人各选修2门的种数=36,再求出两人所选两门都相同和都不同的种数均为=6,故只恰好有1门相同的选法有24种 。5.(2009全国卷理)甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学。若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有( D )(A)150种 (B)180种 (C)300种 (D)345种 解: 分两类(
4、1) 甲组中选出一名女生有种选法; (2) 乙组中选出一名女生有种选法.故共有345种选法.选D6.(2009湖北卷理)将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同分法的种数为 【答案】C【解析】用间接法解答:四名学生中有两名学生分在一个班的种数是,顺序有种,而甲乙被分在同一个班的有种,所以种数是7.(2009四川卷文)2位男生和3位女生共5位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是 A. 60 B. 48 C. 42 D. 36【答案】B【解析】解法一、从3名女生中任取2人“捆”在一起记作
5、A,(A共有种不同排法),剩下一名女生记作B,两名男生分别记作甲、乙;则男生甲必须在A、B之间(若甲在A、B两端。则为使A、B不相邻,只有把男生乙排在A、B之间,此时就不能满足男生甲不在两端的要求)此时共有6212种排法(A左B右和A右B左)最后再在排好的三个元素中选出四个位置插入乙,所以,共有12448种不同排法。解法二;同解法一,从3名女生中任取2人“捆”在一起记作A,(A共有种不同排法),剩下一名女生记作B,两名男生分别记作甲、乙;为使男生甲不在两端可分三类情况:第一类:女生A、B在两端,男生甲、乙在中间,共有=24种排法;第二类:“捆绑”A和男生乙在两端,则中间女生B和男生甲只有一种排
6、法,此时共有12种排法第三类:女生B和男生乙在两端,同样中间“捆绑”A和男生甲也只有一种排法。此时共有12种排法 三类之和为24121248种。 8. (2009全国卷理)甲、乙两人从4门课程中各选修2门。则甲、乙所选的课程中至少有1门不相同的选法共有A. 6种 B. 12种 C. 30种 D. 36种解:用间接法即可.种. 故选C9.(2009辽宁卷理)从5名男医生、4名女医生中选3名医生组成一个医疗小分队,要求其中男、女医生都有,则不同的组队方案共有(A)70种 (B) 80种 (C) 100种 (D)140种 【解析】直接法:一男两女,有C51C425630种,两男一女,有C52C411
7、0440种,共计70种 间接法:任意选取C9384种,其中都是男医生有C5310种,都是女医生有C414种,于是符合条件的有8410470种.【答案】A10.(2009湖北卷文)从5名志愿者中选派4人在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有一人参加,星期六有两人参加,星期日有一人参加,则不同的选派方法共有A.120种 B.96种 C.60种 D.48种【答案】C【解析】5人中选4人则有种,周五一人有种,周六两人则有,周日则有种,故共有=60种,故选C11.(2009湖南卷文)某地政府召集5家企业的负责人开会,其中甲企业有2人到会,其余4家企业各有1人到会,会上有3人发言,则
8、这3人来自3家不同企业的可能情况的种数为【 B 】A14 B16 C20 D48解:由间接法得,故选B. 12.(2009全国卷文)甲组有5名男同学、3名女同学;乙组有6名男同学、2名女同学,若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有(A)150种 (B)180种 (C)300种 (D)345种【解析】本小题考查分类计算原理、分步计数原理、组合等问题,基础题。解:由题共有,故选择D。13.(2009四川卷文)2位男生和3位女生共5位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是 A. 60 B. 48 C. 42 D. 36【
9、答案】B【解析】解法一、从3名女生中任取2人“捆”在一起记作A,(A共有种不同排法),剩下一名女生记作B,两名男生分别记作甲、乙;则男生甲必须在A、B之间(若甲在A、B两端。则为使A、B不相邻,只有把男生乙排在A、B之间,此时就不能满足男生甲不在两端的要求)此时共有6212种排法(A左B右和A右B左)最后再在排好的三个元素中选出四个位置插入乙,所以,共有12448种不同排法。解法二;同解法一,从3名女生中任取2人“捆”在一起记作A,(A共有种不同排法),剩下一名女生记作B,两名男生分别记作甲、乙;为使男生甲不在两端可分三类情况:第一类:女生A、B在两端,男生甲、乙在中间,共有=24种排法;第二
10、类:“捆绑”A和男生乙在两端,则中间女生B和男生甲只有一种排法,此时共有12种排法第三类:女生B和男生乙在两端,同样中间“捆绑”A和男生甲也只有一种排法。此时共有12种排法 三类之和为24121248种。14.(2009陕西卷文)从1,2,3,4,5,6,7这七个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数,其中奇数的个数为 (A)432 (B)288 (C) 216 (D)108网答案:C. 解析:首先个位数字必须为奇数,从1,3,5,7四个中选择一个有种,再丛剩余3个奇数中选择一个,从2,4,6三个偶数中选择两个,进行十位,百位,千位三个位置的全排。则共有故选C. 15.(200
11、9湖南卷理)从10名大学生毕业生中选3个人担任村长助理,则甲、乙至少有1人入选,而丙没有入选的不同选法的种数位 C A 85 B 56 C 49 D 28 【答案】:C【解析】解析由条件可分为两类:一类是甲乙两人只去一个的选法有:,另一类是甲乙都去的选法有=7,所以共有42+7=49,即选C项。16.(2009四川卷理)3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是A. 360 B. 188 C. 216 D. 96 【考点定位】本小题考查排列综合问题,基础题。解析:6位同学站成一排,3位女生中有且只有两位女生相邻的排法有种,其中男生
12、甲站两端的有,符合条件的排法故共有188解析2:由题意有,选B。17.(2009重庆卷文)12个篮球队中有3个强队,将这12个队任意分成3个组(每组4个队),则3个强队恰好被分在同一组的概率为( )ABCD 【答案】B解析因为将12个组分成4个组的分法有种,而3个强队恰好被分在同一组分法有,故个强队恰好被分在同一组的概率为。二、填空题 18.(2009宁夏海南卷理)7名志愿者中安排6人在周六、周日两天参加社区公益活动。若每天安排3人,则不同的安排方案共有_种(用数字作答)。解析:,答案:14019.(2009天津卷理)用数字0,1,2,3,4,5,6组成没有重复数字的四位数,其中个位、十位和百
13、位上的数字之和为偶数的四位数共有 个(用数字作答)【考点定位】本小题考查排列实际问题,基础题。解析:个位、十位和百位上的数字为3个偶数的有:种;个位、十位和百位上的数字为1个偶数2个奇数的有:种,所以共有个。20.(2009浙江卷理)甲、乙、丙人站到共有级的台阶上,若每级台阶最多站人,同一级台阶上的人不区分站的位置,则不同的站法种数是 (用数字作答)答案:336 【解析】对于7个台阶上每一个只站一人,则有种;若有一个台阶有2人,另一个是1人,则共有种,因此共有不同的站法种数是336种 21.(2009浙江卷文)有张卡片,每张卡片上分别标有两个连续的自然数,其中从这张卡片中任取一张,记事件“该卡
14、片上两个数的各位数字之和(例如:若取到标有的卡片,则卡片上两个数的各位数字之和为)不小于”为,则 【命题意图】此题是一个排列组合问题,既考查了分析问题,解决问题的能力,更侧重于考查学生便举问题解决实际困难的能力和水平【解析】对于大于14的点数的情况通过列举可得有5种情况,即,而基本事件有20种,因此 22.(2009年上海卷理)某学校要从5名男生和2名女生中选出2人作为上海世博会志愿者,若用随机变量表示选出的志愿者中女生的人数,则数学期望_(结果用最简分数表示). 【答案】【解析】可取0,1,2,因此P(0), P(1),P(2),023.(2009重庆卷理)锅中煮有芝麻馅汤圆6个,花生馅汤圆
15、5个,豆沙馅汤圆4个,这三种汤圆的外部特征完全相同。从中任意舀取4个汤圆,则每种汤圆都至少取到1个的概率为( )A B C D 【答案】C【解析】因为总的滔法而所求事件的取法分为三类,即芝麻馅汤圆、花生馅汤圆。豆沙馅汤圆取得个数分别按1.1.2;1,2,1;2,1,1三类,故所求概率为24.(2009重庆卷理)将4名大学生分配到3个乡镇去当村官,每个乡镇至少一名,则不同的分配方案有 种(用数字作答)【答案】36【解析】分两步完成:第一步将4名大学生按,2,1,1分成三组,其分法有;第二步将分好的三组分配到3个乡镇,其分法有所以满足条件得分配的方案有2005-2008年高考题一、 选择题1.(2
16、008上海)组合数C(nr1,n、rZ)恒等于() AC B(n+1)(r+1)C Cnr C DC答案 DDBCA2.(2008全国一)如图,一环形花坛分成四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为( )A96 B84 C60 D48 答案B3.(2008全国)从20名男同学,10名女同学中任选3名参加体能测试,则选到的3名同学中既有男同学又有女同学的概率为( )A B C D答案D4.(2008安徽)12名同学合影,站成前排4人后排8人,现摄影师要从后排8人中抽2 人调整到前排,若其他人的相对顺序不变,则不同调整方法的总数是( )A B
17、CD 答案C5.(2008湖北)将5名志愿者分配到3个不同的奥运场馆参加接待工作,每个场馆至少分配一名志愿者的方案种数为A. 540 B. 300 C. 180 D. 150答案D6.(2008福建)某班级要从4名男生、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为A.14B.24C.28D.48答案A7.(2008辽宁)一生产过程有4道工序,每道工序需要安排一人照看现从甲、乙、丙等6名工人中安排4人分别照看一道工序,第一道工序只能从甲、乙两工人中安排1人,第四道工序只能从甲、丙两工人中安排1人,则不同的安排方案共有()A24种B36种C48种D72种答案
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 专项 排列组合 题库 答案
限制150内