高考数学专题(六)解析几何题精心整理的.doc
《高考数学专题(六)解析几何题精心整理的.doc》由会员分享,可在线阅读,更多相关《高考数学专题(六)解析几何题精心整理的.doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流高考数学专题(六)解析几何题 精心整理的.精品文档.高三数学专题(六)解析几何题怎么解高考解析几何试题一般共有4题(2个选择题, 1个填空题, 1个解答题), 共计30分左右, 考查的知识点约为20个左右. 其命题一般紧扣课本, 突出重点, 全面考查. 选择题和填空题考查直线, 圆, 圆锥曲线, 参数方程和极坐标系中的基础知识. 解答题重点考查圆锥曲线中的重要知识点, 通过知识的重组与链接, 使知识形成网络, 着重考查直线与圆锥曲线的位置关系, 求解有时还要用到平几的基本知识, 这点值得考生在复课时强化. 例2 已知直线l与椭圆有且仅有一个交
2、点Q,且与x轴、y轴分别交于R、S,求以线段SR为对角线的矩形ORPS的一个顶点P的轨迹方程 讲解:从直线所处的位置, 设出直线的方程, 由已知,直线l不过椭圆的四个顶点,所以设直线l的方程为代入椭圆方程 得(可以方便计算)化简后,得关于的一元二次方程于是其判别式由已知,得=0即 在直线方程中,分别令y=0,x=0,求得 令顶点P的坐标为(x,y), 由已知,得(K怎么表示出来的) 代入式并整理,得 , 即为所求顶点P的轨迹方程方程形似椭圆的标准方程, 你能画出它的图形吗? 例3已知双曲线的离心率,过的直线到原点的距离是 (1)求双曲线的方程; (2)已知直线交双曲线于不同的点C,D且C,D都
3、在以B为圆心的圆上,求k的值. 讲解:(1)原点到直线AB:的距离(巧妙地设两点式从而简化计算!). 故所求双曲线方程为 (2)把中消去y,(貌似一般无路可走时总是联立便可以了)整理得 .(不要简单的想到用大于0) 设的中点是,则(采用设而不求得思想) (你需要加强这块的练习你基本没怎么做过)即故所求k=.为了求出的值, 需要通过消元, 想法设法建构的方程. 例4 已知椭圆C的中心在原点,焦点F1、F2在x轴上,点P为椭圆上的一个动点,且F1PF2的最大值为90,直线l过左焦点F1与椭圆交于A、B两点,ABF2的面积最大值为12 (1)求椭圆C的离心率; (2)求椭圆C的方程 讲解:(1)设,
4、 对 由余弦定理, 得解出 (2)考虑直线的斜率的存在性,可分两种情况: i) 当k存在时,设l的方程为 椭圆方程为 由 得 .于是椭圆方程可转化为 将代入,消去得 ,整理为的一元二次方程,得 .则x1、x2是上述方程的两根且也可这样求解: ,AB边上的高ii) 当k不存在时,把直线代入椭圆方程得由知S的最大值为 由题意得=12 所以 故当ABF2面积最大时椭圆的方程为: 下面给出本题的另一解法,请读者比较二者的优劣:设过左焦点的直线方程为:(这样设直线方程的好处是什么?还请读者进一步反思反思.)椭圆的方程为:由得:于是椭圆方程可化为:把代入并整理得:于是是上述方程的两根.AB边上的高,从而当
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考数学专题六解析几何题 精心整理的 高考 数学 专题 解析几何 精心 整理
限制150内