《必修五不等式.doc》由会员分享,可在线阅读,更多相关《必修五不等式.doc(16页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、Four short words sum up what has lifted most successful individuals above the crowd: a little bit more.-author-date必修五不等式广州市广州培英中学2004年高中毕业会考数学试题第六、七讲 不等式不等式与不等关系题型一:不等式的性质1. 对于实数中,给出下列命题: ; ; ; ; ; ; ; ,则。其中正确的命题是_题型二:比较大小(作差法、函数单调性、中间量比较,基本不等式)2. 设,试比较的大小3. 比较1+与的大小4. 若,则的大小关系是 .(一) 解不等式题型三:解不等式5.
2、 解不等式 6. 解不等式。7. 解不等式8. 不等式的解集为x|-1x2,则=_, b=_9. 关于的不等式的解集为,则关于的不等式的解集为10. 解关于x的不等式题型四:恒成立问题11. 关于x的不等式a x2+ a x+10 恒成立,则a的取值范围是_ 12. 若不等式对的所有实数都成立,求的取值范围.13. 已知且,求使不等式恒成立的实数的取值范围。(三)基本不等式题型五:求最值14. (直接用)求下列函数的值域(1)y3x 2 (2)yx15. (配凑项与系数)(1)已知,求函数的最大值。(2)当时,求的最大值。16. (耐克函数型)求的值域。注意:在应用基本不等式求最值时,若遇等号
3、取不到的情况,应结合函数的单调性。17. (用耐克函数单调性)求函数的值域。18. (条件不等式)(1) 若实数满足,则的最小值是 .(2) 已知,且,求的最小值。(3) 已知x,y为正实数,且x 21,求x的最大值.(4) 已知a,b为正实数,2baba30,求函数y的最小值.题型六:利用基本不等式证明不等式19. 已知为两两不相等的实数,求证:20. 正数a,b,c满足abc1,求证:(1a)(1b)(1c)8abc21. 已知a、b、c,且。求证:题型七:均值定理实际应用问题:22. 某工厂拟建一座平面图形为矩形且面积为200m2的三级污水处理池(平面图如图),如果池外圈周壁建造单价为每
4、米400元,中间两条隔墙建筑单价为每米248元,池底建造单价为每平方米80元,池壁的厚度忽略不计,试设计污水池的长和宽,使总造价最低,并求出最低造价。(四)线性规划题型八:目标函数求最值23. 满足不等式组,求目标函数的最大值24. 已知实系数一元二次方程的两个实根为、,并且,则的取值范围是 25. 已知满足约束条件: ,则的最小值是26. 已知变量(其中a0)仅在点(3,0)处取得最大值,则a的取值范围为 。27. 已知实数满足如果目标函数的最小值为,则实数等于( )题型九:实际问题28. 某饼店制作的豆沙月饼每个成本35元,售价50元;凤梨月饼每个成本20元,售价30元。现在要将这两种月饼
5、装成一盒,个数不超过10个,售价不超过350元,问豆沙月饼与凤梨月饼各放几个,可使利润最大?又利润最大为多少?复习不等式的基本知识参考答案高中数学必修内容练习-不等式1. ;2. ;3. 当或时,1+;当时,1+;当时,1+4. ( RQP。5. 6. 或;7. );8. 不等式的解集为x|-1x2,则=_-6_, b=_6_9. ).10. 解:当a0时,不等式的解集为;2分当a0时,a(x)(x1)0;当a0时,原不等式等价于(x)(x1)0不等式的解集为;6分当0a1时,1,不等式的解集为;8分当a1时,1,不等式的解集为;10分当a1时,不等式的解为12分11. _0x4_12. )1
6、3. 14. 解:(1)y3x 22 值域为,+) (2)当x0时,yx22;当x0时, yx= ( x)2=2值域为(,22,+)15. (1)解,当且仅当,即时,上式等号成立,故当时,。(2)当,即x2时取等号 当x2时,的最大值为8。16. 解析一: 当,即时,(当且仅当x1时取“”号)。解析二:本题看似无法运用基本不等式,可先换元,令t=x1,化简原式在分离求最值。当,即t=时,(当t=2即x1时取“”号)。17. 解:令,则因,但解得不在区间,故等号不成立,考虑单调性。因为在区间单调递增,所以在其子区间为单调递增函数,故。所以,所求函数的值域为。18. (条件不等式)(1) 解: 都
7、是正数,当时等号成立,由及得即当时,的最小值是6(2) 解:,当且仅当时,上式等号成立,又,可得时,(3) 解:xx x下面将x,分别看成两个因式:x 即xx (4) 解:法一:a, abb 由a0得,0b15令tb+1,1t16,ab2(t)34t28 ab18 y 当且仅当t4,即b3,a6时,等号成立。法二:由已知得:30aba2b a2b2 30ab2令u则u22u300, 5u3 3,ab18,y19. 已知为两两不相等的实数,求证:20. 正数a,b,c满足abc1,求证:(1a)(1b)(1c)8abc21. 已知a、b、c,且。求证:证明:a、b、c,。同理,。上述三个不等式两边均为正,分别相乘,得。当且仅当时取等号。22. 解:若设污水池长为x米,则宽为 (米)水池外圈周壁长: (米)中间隔墙长: (米)池底面积:200(米2)目标函数: 23. 424. 25. 126. 。27. 5 28. 解:设一盒內放入x个豆沙月饼,y个凤梨月饼,利润为z元 则x,y必须满足, 目标函数为z15x10y 在可行区內的顶点附近zf ( x,y ) 的最大值, 所以,一盒内装2个豆沙月饼8个凤梨月饼或4个豆沙月饼5个凤梨月饼,可得最大利润110元。-
限制150内