最新北京邮电大学高等数学8-3精品课件.ppt
《最新北京邮电大学高等数学8-3精品课件.ppt》由会员分享,可在线阅读,更多相关《最新北京邮电大学高等数学8-3精品课件.ppt(30页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、),(),(yxfyxxf xyxfx ),(),(),(yxfyyxf yyxfy ),( 二二元元函函数数对对x和和对对y的的偏偏微微分分 二二元元函函数数对对x和和对对y的的偏偏增增量量由一元函数微分学中增量与微分的关系得由一元函数微分学中增量与微分的关系得一、全微分的定义一、全微分的定义)0 , 0()0 , 0(yfxfzyx ,)()(22yxyx 如如果果考考虑虑点点),(yxP 沿沿着着直直线线xy 趋趋近近于于)0 , 0(,则则 22)()(yxyx 22)()(xxxx ,21 说说明明它它不不能能随随着着0 而而趋趋于于 0,0 当当 时,时,),()0 , 0()0
2、, 0( oyfxfzyx 函函数数在在点点)0 , 0(处处不不可可微微.说明说明:多元函数的各偏导数存在并不能保证全:多元函数的各偏导数存在并不能保证全 微分存在,微分存在,定理定理(充分条件)如果函数(充分条件)如果函数),(yxfz 的偏的偏导数导数xz 、yz 在点在点),(yx连续,则该函数在点连续,则该函数在点),(yx可微分可微分证证),(),(yxfyyxxfz ),(),(yyxfyyxxf ),(),(yxfyyxf ),(),(yyxfyyxxf xyyxxfx ),(1 )10(1 在第一个方括号内,应用拉格朗日中值定理在第一个方括号内,应用拉格朗日中值定理xxyxf
3、x 1),( (依偏导数的连续性)(依偏导数的连续性)且且当当0, 0 yx时时,01 .其其中中1 为为yx ,的的函函数数,xxyxfx 1),( yyyxfy 2),( z 2121 yx, 00 故故函函数数),(yxfz 在在点点),(yx处处可可微微.同理同理),(),(yxfyyxf ,),(2yyyxfy 当当0 y时时,02 ,习惯上,记全微分为习惯上,记全微分为.dyyzdxxzdz 全微分的定义可推广到三元及三元以上函数全微分的定义可推广到三元及三元以上函数.dzzudyyudxxudu 通常我们把二元函数的全微分等于它的两个通常我们把二元函数的全微分等于它的两个偏微分之
4、和这件事称为二元函数的微分符合偏微分之和这件事称为二元函数的微分符合叠加原理也适用于二元以上函数的情况叠加原理也适用于二元以上函数的情况例例 1 1 计计算算函函数数xyez 在在点点)1 , 2(处处的的全全微微分分.解解,xyyexz ,xyxeyz ,2)1 ,2(exz ,22)1 ,2(eyz .222dyedxedz 所求全微分所求全微分例例 2 2 求求函函数数)2cos(yxyz ,当当4 x, y,4 dx, dy时时的的全全微微分分.解解),2sin(yxyxz ),2sin(2)2cos(yxyyxyz dyyzdxxzdz),4(),4(),4( ).74(82 例例
5、3 3 计计算算函函数数yzeyxu 2sin的的全全微微分分.解解, 1 xu,2cos21yzzeyyu ,yzyezu 所求全微分所求全微分.)2cos21(dzyedyzeydxduyzyz 例例 4 4 试证函数试证函数 )0 , 0(),(, 0)0 , 0(),(,1sin),(22yxyxyxxyyxf在在点点)0 , 0(连续且偏导数存在,但偏导数在点连续且偏导数存在,但偏导数在点)0 , 0(不连续,而不连续,而f在点在点)0 , 0(可微可微.思路:按有关定义讨论;对于偏导数需分思路:按有关定义讨论;对于偏导数需分 )0 , 0(),( yx,)0 , 0(),( yx讨
6、论讨论.证证令令,cos x,sin y则则22)0,0(),(1sinlimyxxyyx 1sincossinlim20 0 ),0 , 0(f 故故函函数数在在点点)0 , 0(连连续续, )0 , 0(xfxfxfx )0 , 0()0 ,(lim0, 000lim0 xx同理同理. 0)0 , 0( yf当当)0 , 0(),( yx时时, ),(yxfx,1cos)(1sin22322222yxyxyxyxy 当当点点),(yxP沿沿直直线线xy 趋趋于于)0 , 0(时时,),(lim)0,0(),(yxfxxx,|21cos|22|21sinlim330 xxxxxx不存在不存在
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 最新 北京 邮电大学 高等数学 精品 课件
限制150内