齐次和非齐次线性方程组的解法(整理定稿).doc
《齐次和非齐次线性方程组的解法(整理定稿).doc》由会员分享,可在线阅读,更多相关《齐次和非齐次线性方程组的解法(整理定稿).doc(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流齐次和非齐次线性方程组的解法(整理定稿).精品文档.线性方程组解的结构(解法)一、齐次线性方程组的解法【定义】 r(A)= r n ,若AX = 0(A为矩阵)的一组解为 ,且满足:(1) 线性无关;(2) AX = 0 的)任一解都可由这组解线性表示.则称为AX = 0的基础解系. 称为AX = 0的通解 。其中k1,k2, kn-r为任意常数).齐次线性方程组的关键问题就是求通解, 而求通解的关键问题是求基础解系. 【定理】 若齐次线性方程组AX = 0有解,则(1) 若齐次线性方程组AX = 0(A为矩阵)满足,则只有零解;(2) 齐次
2、线性方程组有非零解的充要条件是.(注:当时,齐次线性方程组有非零解的充要条件是它的系数行列式.)注:1、基础解系不唯一,但是它们所含解向量的个数相同,且基础解系所含解向量的个数等于. 2、非齐次线性方程组的同解方程组的导出方程组(简称“导出组”)为齐次线性方程组所对应的同解方程组。由上述定理可知,若是系数矩阵的行数(也即方程的个数),是未知量的个数,则有:(1) 当时,此时齐次线性方程组一定有非零解,即齐次方程组中未知量的个数大于方程的个数就一定有非零解;(2)当时,齐次线性方程组有非零解的充要条件是它的系数行列式;(3)当且时,若系数矩阵的行列式,则齐次线性方程组只有零解;(4)当时,若,则
3、存在齐次线性方程组的同解方程组;若,则齐次线性方程组无解。1、求AX = 0(A为矩阵)通解的三步骤 (1)(行最简形); 写出同解方程组CX =0.(2) 求出CX =0的基础解系;(3) 写出通解其中k1,k2, kn-r为任意常数.【例题1】 解线性方程组 解法一:将系数矩阵A化为阶梯形矩阵显然有,则方程组仅有零解,即.解法二:由于方程组的个数等于未知量的个数(即)(注意:方程组的个数不等于未知量的个数(即),不可以用行列式的方法来判断),从而可计算系数矩阵A的行列式:,知方程组仅有零解,即.注:此法仅对n较小时方便【例题2】 解线性方程组解:将系数矩阵A化为简化阶梯形矩阵可得,则方程组
4、有无穷多解,其同解方程组为 (其中,为自由未知量)令,得;令,得;令,得,于是得到原方程组的一个基础解系为所以,原方程组的通解为 (,).二、非齐次线性方程组的解法求 AX = b 的解()用初等行变换求解,不妨设前r列线性无关其中 所以知时,原方程组无解.时,原方程组有唯一解.时,原方程组有无穷多解.其通解为,为任意常数。其中:为AX = b导出组AX = 0的基础解系,为AX = b的特解, 【定理1】 如果是非齐次线性方程组AX=b的解,是其导出组AX=0的一个解,则是非齐次线性方程组AX=b的解。【定理2】如果是非齐次线性方程组的一个特解,是其导出组的全部解,则是非齐次线性方程组的全部
5、解。由此可知:如果非齐次线性方程组有无穷多解,则其导出组一定有非零解,且非齐次线性方程组的全部解可表示为:其中:是非齐次线性方程组的一个特解,是导出组的一个基础解系。【例题3】判断下列命题是否正确, A为mn矩阵.(1)若AX=0只有零解,则AX=b有唯一解. 答:错, 因r(A)=n, r(A)= n = r(A |b)? (2)若AX=0有非零解,则AX=b有无穷多解. 答:错, 因r(A)n, r(A)= r(A |b) ? (3)若AX=b有唯一解,则AX=0只有零解. 答:对, r(A)= r(A |b) =n.(4)若AX=0有非零解,则ATX=0也有非零解. 答:错,A为mn,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 非齐次 线性方程组 解法 整理 定稿
限制150内