eviews操作实例-向量自回归模型VAR和VEC.ppt
《eviews操作实例-向量自回归模型VAR和VEC.ppt》由会员分享,可在线阅读,更多相关《eviews操作实例-向量自回归模型VAR和VEC.ppt(101页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2一、一、VAR模型及特点模型及特点 1. VAR模型模型向量自回归模型向量自回归模型 2. VAR模型的特点模型的特点 二、二、VAR模型滞后阶数模型滞后阶数p的确定方法的确定方法 确定确定VAR模型中滞后阶数模型中滞后阶数 p 的两种方法的两种方法 案例案例 三、三、Jonhamson协整检验协整检验 1.Johanson协整似然比(协整似然比(LR)检验)检验 2.Johanson协整检验命令协整检验命令 案例案例 3.协整关系验证方法协整关系验证方法 案例案例 四、四、 格兰杰因果关系检验格兰杰因果关系检验 1.格兰杰因果性定义格兰杰因果性定义 2.格兰杰因果性检验格兰杰因果性检验 案
2、例案例 五、五、 建立建立VAR模型模型 案例案例 六、利用六、利用VAR模型进行预测模型进行预测 案例案例七、脉冲响应函数与方差分解七、脉冲响应函数与方差分解 案例案例八、向量误差修正模型八、向量误差修正模型 案例案例31. VAR模型模型向量自回归模型向量自回归模型 经典计量经济学中,由线性方程构成的联立方程经典计量经济学中,由线性方程构成的联立方程组模型,由科普曼斯(组模型,由科普曼斯(poOKmans1950)和霍德科普曼和霍德科普曼斯(斯(Hood-poOKmans1953)提出。联立方程组模型在提出。联立方程组模型在20世纪五、六十年代曾轰动一时,其优点主要在于对每个方世纪五、六十
3、年代曾轰动一时,其优点主要在于对每个方程的残差和解释变量的有关问题给予了充分考虑,提出了程的残差和解释变量的有关问题给予了充分考虑,提出了工具变量法、两阶段最小二乘法、三阶段最小二乘法、有工具变量法、两阶段最小二乘法、三阶段最小二乘法、有限信息极大似然法和完全信息极大似然法等参数的估计方限信息极大似然法和完全信息极大似然法等参数的估计方法。这种建模方法用于研究复杂的宏观经济问题,有时多法。这种建模方法用于研究复杂的宏观经济问题,有时多达万余个内生变量。当时主要用于预测和达万余个内生变量。当时主要用于预测和一、一、VARVAR模型及特点模型及特点4政策分析。但实际中,这种模型的效果并不令人满政策
4、分析。但实际中,这种模型的效果并不令人满意。意。 联立方程组模型的主要问题:联立方程组模型的主要问题: (1)这种模型是在经济理论指导下建立起来的结构模型)这种模型是在经济理论指导下建立起来的结构模型。遗憾的是经济理论并不未明确的给出变量之间的动态关。遗憾的是经济理论并不未明确的给出变量之间的动态关系。系。 (2)内生、外生变量的划分问题较为复杂;)内生、外生变量的划分问题较为复杂; (3)模型的识别问题,当模型不可识别时)模型的识别问题,当模型不可识别时,为达到可识别为达到可识别的目的,常要将不同的工具变量加到各方程中,通常这种的目的,常要将不同的工具变量加到各方程中,通常这种工具变量的解释
5、能力很弱;工具变量的解释能力很弱; (4)若变量是非平稳的(通常如此),则会违反假设,)若变量是非平稳的(通常如此),则会违反假设,带来更严重的伪回归问题。带来更严重的伪回归问题。5 由此可知,经济理论指导下建立的结构性经典计量模由此可知,经济理论指导下建立的结构性经典计量模型存在不少问题。为解决这些问题而提出了一种用非结构型存在不少问题。为解决这些问题而提出了一种用非结构性方法建立各变量之间关系的模型。本章所要介绍的性方法建立各变量之间关系的模型。本章所要介绍的VARVAR模模型和型和VECVEC模型,就是非结构性的方程组模型。模型,就是非结构性的方程组模型。 VAR (Vector Aut
6、oregression) VAR (Vector Autoregression)模型由西姆斯模型由西姆斯(C.A.Sims,1980C.A.Sims,1980)提出提出, ,他推动了对经济系统动态分析的他推动了对经济系统动态分析的广泛应用,是当今世界上的主流模型之一。受到普遍重视,广泛应用,是当今世界上的主流模型之一。受到普遍重视,得到广泛应用。得到广泛应用。 VAR VAR模型主要用于预测和分析随机扰动对系统的动态冲模型主要用于预测和分析随机扰动对系统的动态冲击,冲击的大小、正负及持续的时间。击,冲击的大小、正负及持续的时间。 VAR VAR模型的定义式为:设模型的定义式为:设 是是N N1
7、 1阶时序阶时序应变量列向量,则应变量列向量,则p p阶阶VARVAR模型(记为模型(记为VAR(p)VAR(p)):):12( )TtttNtYy yyp11221ti t itttp t ptiYYUYYYU(0,)tUIID(11.1)6式中,式中, 是第是第i i个待估参数个待估参数N NN N阶矩阵阶矩阵; ; 是是N N1 1阶随机误差列向量阶随机误差列向量; ; 是是N NN N阶方差协方差矩阵;阶方差协方差矩阵; p p 为模型最大滞后阶数。为模型最大滞后阶数。 由式(由式(11.111.1)知,)知,VAR(p)VAR(p)模型,是以模型,是以N N个第个第t t期变量期变量
8、 为应变量,以为应变量,以N N个应变量个应变量的最大的最大p p阶滞后变量为解释变量的方程组模型,方程组模阶滞后变量为解释变量的方程组模型,方程组模型中共有型中共有N N个方程。显然,个方程。显然,VARVAR模型是由单变量模型是由单变量ARAR模型推广到模型推广到多变量组成的多变量组成的“向量向量”自回归模型。自回归模型。 对于两个变量(对于两个变量(N=2N=2),), 时,时,VAR(2)VAR(2)模型为模型为(i 1,2, ,p)i12( u u )TtttNtUu12ttNtyyy12ttNtyyy(x )TtttYy211221ti t ittttiYYUYYU7用矩阵表示:用
9、矩阵表示: 待估参数个数为待估参数个数为2 2 2 22=2=用线性方程组表示用线性方程组表示VAR(2)VAR(2)模型:模型: 显然,方程组左侧是两个第显然,方程组左侧是两个第t t期内生变量;右侧分期内生变量;右侧分别是两个别是两个1 1阶和两个阶和两个2 2阶滞后应变量做为解释变量,且阶滞后应变量做为解释变量,且各方程最大滞后阶数相同各方程最大滞后阶数相同, ,都是都是2 2。这些滞后变量与随。这些滞后变量与随机误差项不相关(假设要求)。机误差项不相关(假设要求)。121111112211212121122122122222ttttttttyyyuxxxu 11111121211221
10、22112111221221222222ttttttttttttyyxyxuxyxyxu2PN8 由于仅有内生变量的滞后变量出现在等式的由于仅有内生变量的滞后变量出现在等式的右侧,故不存在同期相关问题,用右侧,故不存在同期相关问题,用“LS”LS”法估计法估计参数,估计量具有一致和有效性。而随机扰动列参数,估计量具有一致和有效性。而随机扰动列向量的自相关问题可由增加作为解释应变量的滞向量的自相关问题可由增加作为解释应变量的滞后阶数来解决。后阶数来解决。 这种方程组模型主要用于分析联合内生变量这种方程组模型主要用于分析联合内生变量间的动态关系。联合是指研究间的动态关系。联合是指研究N N个变量个
11、变量 间的相互影响关系,动态是指间的相互影响关系,动态是指p p期滞后。故称期滞后。故称VARVAR模型是分析联合内生变量间的动态关系的动态模模型是分析联合内生变量间的动态关系的动态模型,而不带有任何约束条件,故又称为无约束型,而不带有任何约束条件,故又称为无约束VARVAR模型。建模型。建VARVAR模型的目的:模型的目的: (1 1)预测,且可用于长期预测;)预测,且可用于长期预测; (2 2)脉冲响应分析和方差分解,用于变量间)脉冲响应分析和方差分解,用于变量间的动态结构分析。的动态结构分析。12ttNty yy9 所以所以, VAR, VAR模型既可用于预测模型既可用于预测, ,又可用
12、于结构又可用于结构分析。近年又提出了结构分析。近年又提出了结构VARVAR模型(模型(SVARSVAR:Structural VARStructural VAR)。)。 有取代结构联立方程组模有取代结构联立方程组模型的趋势。由型的趋势。由VARVAR模型又发展了模型又发展了VECVEC模型模型。 2. VAR模型的特点模型的特点 VARVAR模型较联立方程组模型有如下特点:模型较联立方程组模型有如下特点: (1 1)VARVAR模型不以严格的经济理论为依据。模型不以严格的经济理论为依据。在建模过程中只需明确两件事:第一,哪些变量在建模过程中只需明确两件事:第一,哪些变量应进入模型(要求变量间具
13、有相关关系应进入模型(要求变量间具有相关关系格兰格兰杰因果关系杰因果关系 );第二,滞后阶数);第二,滞后阶数p p的确定(保证的确定(保证残差刚好不存在自相关);残差刚好不存在自相关);10 (2 2)VARVAR模型对参数不施加零约束(如模型对参数不施加零约束(如t t检检验);验); (3 3)VARVAR模型的解释变量中不含模型的解释变量中不含t t期变量,所期变量,所有与联立方程组模型有关的问题均不存在;有与联立方程组模型有关的问题均不存在; (4 4)VARVAR模型需估计的参数较多。如模型需估计的参数较多。如VARVAR模型模型含含3 3个变量(个变量(N=3N=3),),最大滞
14、后期为最大滞后期为p=2p=2,则有则有 =2=232=1832=18个参数需要估计;个参数需要估计; (5 5)当样本容量较小时,多数参数估计的精)当样本容量较小时,多数参数估计的精度较差,故需大样本,一般度较差,故需大样本,一般n50n50。 注意:注意: “VAR”“VAR”需大写,以区别金融风险管需大写,以区别金融风险管理中的理中的VaRVaR。2PN11 建立建立VARVAR模型只需做两件事模型只需做两件事 第一,哪些第一,哪些变量可作为应变量?变量可作为应变量?VARVAR模型中应模型中应纳入具有相关关系的变量作为应变量,而变量间纳入具有相关关系的变量作为应变量,而变量间是否具有相
15、关关系,要用格兰杰因果关系检验确是否具有相关关系,要用格兰杰因果关系检验确定。定。 第二,确定模型的最大滞后阶数第二,确定模型的最大滞后阶数p p。首先介绍首先介绍确定确定VAR模型最大滞后阶数模型最大滞后阶数p的方法:的方法:在在VARVAR模型模型中解释变量的最大滞后阶数中解释变量的最大滞后阶数p p太小,残差可能存在太小,残差可能存在自相关,并导致参数估计的非一致性。适当加大自相关,并导致参数估计的非一致性。适当加大p p值(即增加滞后变量个数),可消除残差中存在值(即增加滞后变量个数),可消除残差中存在 二、二、VARVAR模型模型中滞后阶数中滞后阶数p p的确的确定方法定方法 12的
16、自相关。但的自相关。但p p值又不能太大。值又不能太大。p p值过大,待估参数多值过大,待估参数多, ,自由度降低严重,直接影响模型参数估计的有效性。自由度降低严重,直接影响模型参数估计的有效性。这里介绍两种常用的确定这里介绍两种常用的确定p p值的方法。值的方法。 (1)用赤池信息准则()用赤池信息准则(AIC)和施瓦茨()和施瓦茨(SC)准)准则确定则确定p值。值。确定确定p p值的方法与原则是在增加值的方法与原则是在增加p p值的过程值的过程中,使中,使AICAIC和和 SCSC值同时最小。值同时最小。 具体做法是具体做法是:对年度:对年度、季度数据,一般比较到季度数据,一般比较到P=4
17、P=4,即分别建立,即分别建立VAR(1)VAR(1)、VAR(2)VAR(2)、VAR(3)VAR(3)、VAR(4)VAR(4)模型模型,比较,比较AICAIC、SCSC,使它们同时取最小值的,使它们同时取最小值的p p值即为所求值即为所求。而对月度数据,一般比较到。而对月度数据,一般比较到P=12P=12。 当当AICAIC与与SCSC的最小值对应不同的的最小值对应不同的p p值时,只能用值时,只能用LRLR检验法。检验法。13 (2)用似然比统计量)用似然比统计量LR选择选择p值。值。LRLR定义为定义为: 式中,式中, 和和 分别为分别为VAR(p)VAR(p)和和VAR(p+i)V
18、AR(p+i)模型的对数似然函数值;模型的对数似然函数值;f f为自由度。为自由度。 用对数似然比统计量用对数似然比统计量LRLR确定确定P P的方法用案例说的方法用案例说明。明。 22 ln ( ) ln ()( )(11.2)LRl pl p iflnl(p+i)lnl(p)14 案例案例1 我国我国19531953年年20042004年支出法国内生产总年支出法国内生产总值(值(GDPGDP)、最终消费()、最终消费(CtCt)和固定资本形成总额()和固定资本形成总额(ItIt) 的时序数据列于的时序数据列于D8.1D8.1中。数据来源于中。数据来源于中国统计年鉴中国统计年鉴各期。各期。
19、用商品零售价格指数用商品零售价格指数p90p90(19901990年年=100=100)对)对GDPGDP、CtCt和和ItIt进行平减,以消除物价变动的影响,并进行自然进行平减,以消除物价变动的影响,并进行自然对数变换,以消除序列中可能存在的异方差,得到新序对数变换,以消除序列中可能存在的异方差,得到新序列:列: LGDPt=LOG(GDPt/p90t) LGDPt=LOG(GDPt/p90t); LCt=LOG(Ct/p90t) LCt=LOG(Ct/p90t); LIt=LOG(It/p90t) LIt=LOG(It/p90t)。GDPGDP、 CtCt和和 ItIt与与LGDPtLGD
20、Pt、 LCt LCt和和LItLIt的时序图分别示于的时序图分别示于图图11-111-1和图和图11-211-2,由图,由图11-211-2可以看出,三个对数序列的可以看出,三个对数序列的变化趋势基本一致,可能存在协整关系。变化趋势基本一致,可能存在协整关系。150400008000012000016000055606570758085909500GDPCTIT5678910111255606570758085909500LGDPLCTLIT图图11-1 GDPt、Ct和 It的时序图图图11-2 LGDPt、LCt和LIt的时序图16 表表11.1 PP单位根检验结果单位根检验结果 检验
21、检验值 5% 模型形式 DW值 结 论 变量 临界值 (C t p) -4.3194 -2.9202 (c 0 3) 1.6551 LGDPt I(1) -5.4324 -2.9202 (c 0 0) 1.9493 LCt I( 1) -5.7557 -2.9202 (c 0 0) 1.8996 LItI(1) 注C为位移项,t为趋势,p为滞后阶数。 由表由表11.111.1知,知, LGDPtLGDPt、 LCt LCt和和LItLIt均为一阶均为一阶单整,可能存在协整关系。单整,可能存在协整关系。2tLGDPLCt2LIt2 由于由于 LGDP LGDP、 LCt LCt和和LItLIt可
22、能存在协整关系,可能存在协整关系,故对它们进行单位根检验,且选用故对它们进行单位根检验,且选用pppp检验法。检检验法。检验结果列于表验结果列于表11.1.11.1.案例案例 1 (一一)单位根检验单位根检验17 案例案例1 (二二)滞后阶数滞后阶数p的确定的确定 首先用赤池信息准则(首先用赤池信息准则(AICAIC)和施瓦茨()和施瓦茨(SCSC)准则选择准则选择p p值,计算结果列于表值,计算结果列于表11.211.2。 表表11.2 AIC11.2 AIC与与SCSC随随p p的变化的变化 由表由表11.2知知,AIC和和SC最小值对应的最小值对应的p值均为值均为, 故应取故应取VAR模
23、型滞后阶数模型滞后阶数p=2 。 p AIC SC 1-8.8601-8.4056237.9328 2-9.3218-8.5187254.0448 3-9.1599-8.0017254.4179 4-9.1226-7.6022257.9417kl()Lnl p18 案例案例2 序列序列y1y1、y2y2和和y3y3分别表示我国分别表示我国19521952年至年至19881988年工业部门、交通运输部门和商业部门年工业部门、交通运输部门和商业部门的产出指数序列,数据在的产出指数序列,数据在D11.1D11.1中。试确定中。试确定VARVAR模模型的滞后阶数型的滞后阶数p p。 设设 Ly1=lo
24、g Ly1=log(y1y1);); Ly2=logLy2=log(y2y2);); Ly3=logLy3=log(y3y3)。)。 用用AIC AIC 和和 SCSC准则判断,得表准则判断,得表11.311.3。19 表表11.3 AIC11.3 AIC与与SCSC随随P P的变化的变化 由表由表11.311.3知知, ,在在P=1P=1时,时,SC SC 最小(最小(-4.8474-4.8474),在,在P=3P=3时时,AIC ,AIC 最小(最小(-5.8804-5.8804),相互矛盾不),相互矛盾不能确定能确定P P值,只能用似然比值,只能用似然比LRLR确定确定P P值。值。 P
25、 AIC SC 1-5.3753-4.8474108.7551 2-5.6603-4.7271120.0551 3-5.8804-4.5337129.9676 4-5.6693-3.9007132.5442()L nl P20 检验的原假设是模型滞后阶数为检验的原假设是模型滞后阶数为1,即即P=1,似然比检验统计量似然比检验统计量LR :其中,其中,Lnl(1)和和Lnl(3)分别为分别为P=1和和P=3时时VAR(P)模型的对数似然函数值。在零假设下,该统计量模型的对数似然函数值。在零假设下,该统计量服从渐进的服从渐进的 分布,其自由度分布,其自由度f为从为从VAR(3)到到VAR(1)对模
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- eviews 操作 实例 向量 回归 模型 VAR VEC
限制150内