最新发电厂电气设备课件 第三章 电气主接线PPT课件.ppt
《最新发电厂电气设备课件 第三章 电气主接线PPT课件.ppt》由会员分享,可在线阅读,更多相关《最新发电厂电气设备课件 第三章 电气主接线PPT课件.ppt(192页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、发电厂电气设备课件发电厂电气设备课件 第三第三章章 电气主接线电气主接线概述概述 电气主接线也称为电气主系统或电气一次接线,他是由一次设备按电力生产的顺序和功能要求连接而成的接受和分配电能的电路,是发电厂、变电所电气部分的主体。也是电力系统网络的重要组成部分。 电气主接线反映了发电机、变压器、线路、断路器和隔离开关等有关电气设备的数量、各回路中电气设备的连接关系及发电机、变压器、与输电线路、负荷间以怎样的方式连接,直接关系到电力体统运行的可靠性、灵活性和安全性。基本知识二: 1、同一回路中在断路器可能出现电源的一侧或两侧均应配置隔离开关,以便检修断路器时隔离电源。 2、若馈线的用户侧无电源时,
2、断路器通往用户的那一侧,可以不装设线路隔离开关。若费用不大,为阻止过电压的侵入,也可装设。 3、若电源是发电机,则发电机与其出口断路器之间可不装隔离开关。但为了便于对发电机单独进行调整和试验,也可装设隔离开关或设置可拆连接点。1.单母线接线特点: 简单清晰、设备少、投资少运行操作方便,有利于扩建。 可靠性和灵活性较差,母线或母线隔离开关故障或检修时,必须断开它所接的电源;与之相接的所有的电力装置,在整个检修期间均需停止工作。 图31 不分段的单母线接线(1)母线分段单母线用分段断路器进行分段,可以提高供电可靠性和灵活性。对重要用户可以从不同段引出两回馈电线路,由两个电源供电。分段的数目,取决于
3、电源数量和容量。通常以23段为宜。(2)加设旁路母线目的:为了检修出线断路器,不致中断该回路供电。当检修电源回路断路器期间不允许断开电源时,旁路母线还可与电源回路连接。图32分段的单母线接线图33 有专有旁路断路器的分段单母线带旁路母线接线图34 分段断路器兼作旁路断路器的接线图35 分段兼旁路断路器的其他接线(a)不装母线分段隔离开关;(b)、(c)正常运行时旁路母线带电2.双母线接线双母线接线每回线路都经过一台断路器和两组隔离开关分别与两组母线连接,母线之间通过断路器(简称母联)连接。双母线接线的特点:(1)供电可靠(2)调度灵活(3)扩建方便图36 一般双母线接线 常运行时,与工作母线连
4、接的隔离开关接通,而备用母线连接的隔离开关常运行时,与工作母线连接的隔离开关接通,而备用母线连接的隔离开关及母联开关断开,其特点如下:及母联开关断开,其特点如下: (1)关于检修时的供电可靠性)关于检修时的供电可靠性(a)当工作母线检修或短路故障时,可利用母联开关把工作母线上的全部接线通过开关,倒换到备用母线上,再将工作母线退出,进行检修,不致停电或仅短时停电(b)检修任一回路的母线隔离开关,仅停该线路,其余线路可以不停电,通过另一组母线继续运行。(c)检修任一出线断路器时,可采用搭跨条的办法只使该出线短时停电,跨条搭好后即可供电。(2 2)运行调度的灵活性)运行调度的灵活性(a)投入母联,两
5、组母线同时运行,具有单母线分段接线的特点(b)断开母联,两组母线分裂运行。 同样,为提高供电可靠性和检修出线断路器,不致对该回路停电,亦可采用双母线分段接线及双母线带旁路接线形式。 前者广为火力发电厂用于发电机电压母线接线,后者则更广泛地被用于35kV以上多路出线时的接线形式(a) 在特殊需要时,可用母联与系统进行同期或解列操作。(b) 当个别回路需独立工作或试验时可将该回路单独接到备用母线上进行。(3)特殊运行特殊运行图37 具有专用旁路断路器的双母线带旁 路接线图38 母联断路器兼作旁路断路器的接 线图39 双母线带旁路隔离开关接线图310 双母线三分段接线图311 双母线四分段接线图31
6、2 双母线四分段带旁路接线3.一台半断路器接线每两个回路用三台断路器接在两组母线,两回路间设一台联络断路器,形成一串,称为一台半断路器接线,又称二分之三接线。它又属于一个回路由两台断路器供电的双重连接的多环形接线。当只有两串时一般采用交叉连接形式,以提高可靠性。在进线和出线端安装隔离开关,以提高可靠性。特点:特点:具有很高的可靠性。任一母线故障或检修,均不停电;任一断路器检修也不引起停电;甚至于两组母线同时故障的极端情况下,功率仍能继续输送。图313 一台半断路器接线4.变压器母线组接线特点: 这种接线所用的断路器的台数,比双母线双断路器接线或双母线一台半断路器接线都要少,投资较省; 它是一种
7、多环路供电系统,当变压器质量有保证时,整个接线又具有较高的可靠性、运行调度灵活和便于扩建图315 变压器母线组接线二、无汇流母线二、无汇流母线主要体现为三种形式:主要体现为三种形式: 1)单元接线 2)桥型接线 3)角型接线1.单元接线单元接线发电机与变压器直接连接成一个单元,组成发电机-变压器组,称为单元接线。发电机出口一般不装设断路器,为调试发电机方便可装设隔离开关。对于200MW以上的机组,发电机出口多采用分相封闭母线,为减少开断点,可不装隔离开关,但应留有可拆点,以利于机组调试。特点:特点: 接线简单,开关设备少,操作简便; 因不设发电机电压级母线,使得在发电机和变压器低压侧短路时,短
8、路电流相对于具有母线时,有所减小。图316单元接线关于发电机出口是否装设断路器的问题:关于发电机出口是否装设断路器的问题: 目前我国及许多国家的大容量机组(特别是20OMW以上的机组)的单元接线中,发电机出口一般不装设断路器。 其理由是,大电流大容量断路器(或负荷开关)投资较大,而且在发电机出口至主变压器之间采用封闭母线后,此段线路范围的故障可能性亦已降低。甚至在发电机出口也不装隔离开关,只设有可拆的连接片,以供发电机测试时用。发电机出口也有装设断路器的,其理由是:发电机出口也有装设断路器的,其理由是: (1)发电机组解、并列时,可减少主变压器高压侧断路器操作次数,特别是5OOkV或220kV
9、为一台半断路器接线时,能始终保持一串内的完整性。当电厂接线串数较少时,保持各串不断开(不致开环),对提高供电送电的可靠性有明显的作用。 (2)起停机组时,可用厂用高压工作变压器提供厂用电,减少了厂用高压系统的倒闸操作,从而可提高运行可靠性。当厂用工作变压器与厂用起动变压器之间的电气功角相差较大(一般 150)时,这种运行方式更为需要。 (3)当发电机出口有断路器时,厂用备用变压器的容量可与工作变压器容量相等,且厂用高压备用变压器的台数可以减少。如我国规程规定,两台机组(不设出口断路器)要设置一台厂用备用变压器,而前苏联的设计一般为6台机组设置一台厂用备用变压器。 这种单元接线,避免了由于额定电
10、流或短路电流过大,这种单元接线,避免了由于额定电流或短路电流过大,使得选择出口断路器时,受到制造条件或价格甚高等原因使得选择出口断路器时,受到制造条件或价格甚高等原因造成的困难。造成的困难。 发电机与自耦变压器或三绕组变压器组成的单元接线:发电机与自耦变压器或三绕组变压器组成的单元接线: 为了在发电机停止工作时,还能保持和中压电网之间的联系,在变压器的三侧均应装断路器。 发电机一变压器线路组成单元接线。它适宜于一机、一变、一线的厂、所。此接线最简单,设备最少,不需要高压配电装置。 2.桥形接线 当只有两台变压器和两条输电线路时,采用桥式接线的断路器最少。依照连接桥对于变压器的位置可分为内桥和外
11、桥。运行时,桥臂上的联络断路器QF处于闭合状态。 当输电线路较长、故障机率较多、两台变压器又都经常运行时,采用内桥接线较适宜; 而在输电线路(以下简称线路)较短、且变压器随经济运行要求需经常切换或系统有穿越功率流经本厂(如两回线路均接入环形电网)时,则采用外桥接线更为适宜。 在内桥接线中,当变压器故障时,需停相应线路; 在外桥接线中,当线路故障时,需停相应的变压器; 在桥式接线中,隔离开关又作为操作电器,所以桥式接线可靠性较差。 但由于这种接线使用的断路器少、布置简单、造价低,往往在3522OkV配电装置中得到采用。图317桥形接线3.角形接线角形接线中,断路器数等于回路数,且每条回路都与两台
12、断路器相连接,检修任一台断路器都不致中断供电,隔离开关作为隔离电压的器件,只在检修设备时起隔离电源之用,从而具有较高的可靠性和灵活性。角形接线在开环和闭环两种运行状态时,各支路所通过的电流差别很大,可能使电器选择造成困难,并使继电保护复杂化。 为防止在检修某断路器出现开环运行时,恰好又发生另一断路器故障,造成系统解列或分成两部分运行,甚至造成停电事故,一般应将电源与馈线回路相互交替布置,如四角形接线按“对角原则”接线,将会提高供电可靠性。 此外,角形接线也不便于扩建。这种接线多用于最终规模较明确的110kV及以上的配电装置中,且以不超过六角形为宜。图319 角形接线v 主变压器:在发电厂和变电
13、所中,用来向电力系统或用户输送功率的变压器;v 联络变压器:用于两种电压等级之间交换功率的变压器;v 厂(所)用变压器或称自用变压器:只供本厂(所)用电的变压器。第三节:发电厂和变电所主变压器的选择一:主变压器台数、容量的选择原则一:主变压器台数、容量的选择原则二:主变压器形式的选择二:主变压器形式的选择一:主变压器台数、容量的选择原则一:主变压器台数、容量的选择原则变压器台数、容量的确定原则 主变压器的台数、容量直接影响主接线的形式和配电装置的结构。它的确定除依据传递容量基本原始资料外,还应根据电力系统510年发展规、输送功率大小、馈线回路数、电压等级以及接入系统的紧密程度等因素,进行综合分
14、析和合理选择。1.关于主变压器台数选择问题 发电厂或变电所主变压器的台数与电压等级、接线形式、传输容量以及和系统的联系有密切关系。 通常与系统具有强联系的大、中型发电厂和枢纽变电所,在一种电压等级下,主变压器应不少于 2台;对弱联系的中、小型电厂和低压侧电压为610kV的变电所或与系统联系只是备用性质时,可只装1台主变压器; 对地区性孤立的一次变电所或大型工业专用变电所,可设3台主变压器。2.关于主变压器容量的选择问题如果变压器容量选得过大、台数过多,不仅增加投资,增大占地面积,而且也增加了运行电能损耗,设备未能充分发挥效益;若容量选得过小,将可能“封锁”发电机剩余功率的输出或者会满足不了变电
15、所负荷的需要,这在技术上是不合理的。因为每千瓦的发电设备投资远大于每千瓦变电设备的投资。为此,在选择发电厂主变压器时,应遵循以下基本原则。 1单元接线的主变压器容量的确定原则 单元接线时变压器容量应按来确定。采用扩大单元接线时,应尽可能采用分裂绕组变压器,其容量亦应按单元接线的计算原则算出的两台机容量之和来确定。 2具有发电机电压母线接线的主变压器容量的确定原则 连接在发电机电压母线与系统之间的主变压器的容量,应考虑以下因素: 1)当后,主变压器应能将发电机电压母线上的剩余有功和无功容量送入系统; 2)当接在发电机电压母线上的。此时,应适当考虑发电机电压母线上负荷可能的增加以及变压器的允许过负
16、荷能力; 3)若发电机电压母线上接有两台或以上的主变压器时,当其中; 4)对水电比重较大的系统,由于经济运行之要求,应充分利用水能。在,以满足发电机电压母线上最大负荷的要求。 3连接两种升高电压母线的联络变压器容量的确定原则 1)联络变压器容量应能。 2)联络变压器容量一般,以保证最大一台机组故障或检修时,通过联络变压器来满足本侧负荷的要求;同时,也可在线路检修或故障时,通过联络变压器将剩余容量送入另一系统。 3)联络变压器为了布置和引线方便,。其第三绕组,即低压绕组兼作厂用备用电源或引接无功补偿装置。 4变电所主变压器容量确定原则 变电所主变压器容量,一般应。根据城市规划、负荷性质、电网结构
17、等综合考虑确定其容量。对;对。是一种静止电器,运行实践证明它的工作是比较可靠的。,事故率较小。通常设计时,不必考虑另设专用备用变压器。但大容量单相变压器组是否需要设置备用相,应根据电力系统要求,经过经济技术比较后确定。按照以上原则确定变压器容量后,最终应选用靠近的国家系列标准规格。 1.相数选择 2.绕组数选择 3.绕组连接方式 4.调压方式的选择 5.变压器的冷却方式选择主变压器型式时,应考虑以下问题。 单相变压器组相对来讲投资大、占地多、运行损耗也较大,同时配电装置结构复杂,也增加了维修工作量。 但是由于变压器的制造条件和运输条件的限制,特别是大型变压器,尤其需要考察其运输可能性,从制造厂
18、到发电厂(或变电所)之间,变压器尺寸是否超过运输途中隧洞、涵洞、桥洞的允许通过限额; 1相数的确定 变压器重量是否超过运输途中车辆、船舶、码头、桥梁等运输工具或设施的允许承载能力。若受到限制时,则宜选用两台小容量的三相变压器取代一台大容量三相变压器,或者选用单相变压器组。 对500kV及以上电力系统中的主变压器相数的选择,除按容量、制造水平、运输条件确定外,更重要的是考虑负荷和系统情况、保证供电可靠性,进行综合分析,在满足技术、经济的条件下来确定选用2.绕组数选择绕组数选择 国内电力系统中采用的变压器按其绕组数分类有双绕组普通式、三绕组式、自耦式以及低压绕组分裂式等型式变压器。 发电厂如以两种
19、升高电压级向用户供电或与系统连接时,可以采用: 一般当; 因为一台三绕组变压器的价格及所使用的控制电器和辅助设备,与相应的两台双绕组变压器相比都较少。但,否则绕组未能充分利用,反而不如选用两台双绕组变压器合理。 对于,由于机组容量大,额定电流及短路电流都甚大,发电机出口断路器制造困难,价格昂贵,且对供电可靠性要求较高。 所以,一般,而封闭母线回路中一般不装置断路器和隔离开关。 况且,三绕组变压器由于制造上的原因,中压侧不留分接头,只作死抽头,不利于高、中压侧的调压和负荷分配。 为此,一般以采用双绕组变压器加联络变压器更为合理。v其,低压绕组可作为厂用备用电源或厂用启动电源,亦可连接无功补偿装置
20、。 当采用扩大单元接线时,应优先选用,这样,可以大大限制短路电流。v在110kV及以上中性点直接接地系统中,凡需,它损耗小、体积小、效率高,但限制短路电流的效果较差,变比不宜过大。3绕组接线组别的确定绕组接线组别的确定 变压器三相绕组的接线组别必须和系统电压相位一致,否则,不能并列运行。 电力系统采用的绕组连接方式只有星形“Y”和三角形“ D”两种。因此,变压器三相绕组的连接方式应根据具体工程来确定。 我国110kV及以上电压,变压器三相绕组都采用“Y。”连接; 35 kV采用“ Y”连接,其中性点多通过消弧线圈接地; 35 kV以下高压电压,变压器三相绕组都采用“D”连接。 在发电厂和变电所
21、中,一般考虑系统或机组的同步并列要求以及限制三次谐波对电源的影响等因素,根据以上绕组连接方式的原则,主变压器接线组别一般都选用YN,dll常规接线。 近年来,国内外亦有采用全星形接线组别的变压器。所谓“全星形”变压器,一般是指其接线组别为: YN, yno, yo(YN, yno , yno )或YN, yo(YN, yno )的三绕组变压器或自耦变压器。 它不仅与 35 kV电网并列时,由于相位一致比较方便,而且零序阻抗较大,有利于限制短路电流。同时,也便于在中性点处连接消弧线圈。 但是,由于全星形变压器三次谐波无通路,因此,将引起正弦波电压畸变,并对通信设备发生干扰,同时对继电保护整定的准
22、确度和灵敏度均有影响。4调压方式的确定 为了保证发电厂或变鬼所的供电质量,电压必须维持在允许范围内。通过变压器的分接头开关切换,改变变压器高压侧绕组匝数,从而改变其变比,实现电压调整。 切换方式有两种: 不带电切换,称为无激磁调压,调整范围通常在上2。25以内; 另一种是带负荷切换,称为有载调压,调整范围可达30,其结构较复杂,价格较贵,只在以下情况下才予以选用: 1)接于出力变化大的发电厂的主变压器,特别是潮流方向不固定,且要求变压器副边电压维持在一定水平时; 2)接于时而为送端,时而为受端,具有可逆工作特点的联络变压器。为保证供电质量,要求母线电压恒定时; 3)发电机经常在低功率因数下运行
23、时。5冷却方式的选择 电力变压器的冷却方式,随其型式和容量不同而异,一般有以下几种类型。 ( 1)自然风冷却一般适于7500kVA以下小容量变压器。为使热量散发到空气中,装有片状或管形辐射式冷却器,以增大油箱冷却面积 ( 2)强迫空气冷却又简称风冷式。容量大于10000kVA的变压器,在绝缘允许的油箱尺寸下,即使有辐射器的散热装置仍达不到要求时,常采用人工风冷。在辐射器管间加装数台电动风扇,用风吹冷却器,使油迅速冷却,加速热量散出。风扇的启停可以自动控制,亦可人工操作。 (3)强迫油循环水冷却单纯的加强表面冷却可以降低油温,但当油温降到一定程度时,油的粘度增加,以致使油的流速降低,对大容量变压
24、器已达不到预期冷却效果,故采用潜油泵强迫油循环,让水对油管道进行冷却,把变压器中热量带走。在水源充足的条件下,采用这种冷却方式极为有利,散热效率高,节省材料,减小变压器本体尺寸。但要一套水冷却系统和有关附件,且对冷却器的密封性能要求较高。即使只有极微量的水渗入油中,也会严重地影响油的绝缘性能,故油压应高于水压(11.5)x105Pa,以免水渗入油中。 (4)强迫油循环风冷却其原理同于强迫油循环水冷却。 (5)强迫油循环导向冷却近年来大型变压器都采用这种冷却方式。 它是利用潜油泵将冷油压入线圈之间、线饼之间和铁芯的油道中,使铁芯和绕组中的热量直接由具有一定流速的油带走,而变压器上层热油用潜油泵抽
25、出,经过水冷却器或风冷却器冷却后,再由潜油泵注入变压器油箱底部,构成变压器的油循环。 (6)水内冷变压器变压器绕组用空心导体制成。在运行中,将纳水注入空心绕组中,借助水的不断循环,将变压器中热量带走。但水系统比较复杂,且变压器价格较高。第四节:第四节:限制短路电流的方法限制短路电流的方法一、选择适当的主接线形式和运行方式 为了减小短路电流,可选用计算阻抗较大的接线和运行方式。 如对大容量发电机可采用单元接线,尽可能在发电机电压级不采用母线; 在降压变电所中可采用变压器低压侧分列运行方式,即所谓“母线硬分段”接线方式; 对具有双回路的电路,在负荷允许的条件下可采用单回路运行; 对环形供电网络,可
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 最新发电厂电气设备课件 第三章 电气主接线PPT课件 最新 发电厂 电气设备 课件 第三 电气 接线 PPT
限制150内