人教版八年级数学下册表格式全册教案-(3)可编辑打印.doc





《人教版八年级数学下册表格式全册教案-(3)可编辑打印.doc》由会员分享,可在线阅读,更多相关《人教版八年级数学下册表格式全册教案-(3)可编辑打印.doc(103页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第十六章 二次根式 教材内容 1本单元教学的主要内容: 二次根式的概念;二次根式的加减;二次根式的乘除;最简二次根式 2本单元在教材中的地位和作用: 二次根式是在学完了八年级下册第十七章反比例正函数、第十八章勾股定理及其应用等内容的基础之上继续学习的,它也是今后学习其他数学知识的基础 教学目标 1知识与技能 (1)理解二次根式的概念 (2)理解(a0)是一个非负数,()2=a(a0),=a(a0) (3)掌握(a0,b0),=;=(a0,b0),=(a0,b0) (4)了解最简二次根式的概念并灵活运用它们对二次根式进行加减 2过程与方法 (1)先提出问题,让学生探讨、分析问题,师生共同归纳,得
2、出概念再对概念的内涵进行分析,得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简 (2)用具体数据探究规律,用不完全归纳法得出二次根式的乘(除)法规定,并运用规定进行计算 (3)利用逆向思维,得出二次根式的乘(除)法规定的逆向等式并运用它进行化简 (4)通过分析前面的计算和化简结果,抓住它们的共同特点,给出最简二次根式的概念利用最简二次根式的概念,来对相同的二次根式进行合并,达到对二次根式进行计算和化简的目的 3情感、态度与价值观 通过本单元的学习培养学生:利用规定准确计算和化简的严谨的科学精神,经过探索二次根式的重要结论,二次根式的乘除规定,发展学生观察、分析、发现问题的能力 教学
3、重点 1二次根式(a0)的内涵(a0)是一个非负数;()2a(a0);=a(a0)及其运用 2二次根式乘除法的规定及其运用 3最简二次根式的概念 4二次根式的加减运算 教学难点 1对(a0)是一个非负数的理解;对等式()2a(a0)及=a(a0)的理解及应用 2二次根式的乘法、除法的条件限制 3利用最简二次根式的概念把一个二次根式化成最简二次根式 教学关键 1潜移默化地培养学生从具体到一般的推理能力,突出重点,突破难点 2培养学生利用二次根式的规定和重要结论进行准确计算的能力,培养学生一丝不苟的科学精神 单元课时划分 本单元教学时间约需11课时,具体分配如下: 211 二次根式 3课时 212
4、 二次根式的乘法 3课时 213 二次根式的加减 3课时 教学活动、习题课、小结 2课时161 二次根式第一课时 教学内容 二次根式的概念及其运用教学目标知识与技能:1、 理解二次根式的概念,并利用(a0)的意义解答具体题目2、提出问题,根据问题给出概念,应用概念解决实际问题过程与方法:经历观察、比较,总结二次根式概念和被开方数取值的过程,发展学生的归纳概括能力。情感态度与价值观:经历观察、比较和应用等数学活动,感受数学活动充满了探索性和创造性,体验发现的快乐,并提高应用的意识。 教学重难点 1重点:形如(a0)的式子叫做二次根式的概念;2难点:利用“(a0)”解决具体问题教学方法:讲解小组合
5、作教学准备:多媒体课件 教学过程 一、复习引入 (学生活动)请同学们独立完成下列三个问题: 问题1:已知反比例函数y=,那么它的图象在第一象限横、纵坐标相等的点的坐标是_问题2:如图,在直角三角形ABC中,AC=3,BC=1,C=90,那么AB边的长是_ 问题3:甲射击6次,各次击中的环数如下:8、7、9、9、7、8,那么甲这次射击的方差是S2,那么S=_ 老师点评:问题1:横、纵坐标相等,即x=y,所以x2=3因为点在第一象限,所以x=,所以所求点的坐标(,) 问题2:由勾股定理得AB= 问题3:由方差的概念得S= . 二、探索新知 很明显、,都是一些正数的算术平方根像这样一些正数的算术平方
6、根的式子,我们就把它称二次根式因此,一般地,我们把形如(a0)的式子叫做二次根式,“”称为二次根号 (学生活动)议一议: 1-1有算术平方根吗? 20的算术平方根是多少? 3当a0)、-、(x0,y0) 分析:二次根式应满足两个条件:第一,有二次根号“”;第二,被开方数是正数或0 解:二次根式有:、(x0)、-、(x0,y0);不是二次根式的有:、 例2当x是多少时,在实数范围内有意义? 分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-10,才能有意义 解:由3x-10,得:x 当x时,在实数范围内有意义 三、巩固练习 教材P3练习1、2、3 四、应用拓展 例3当x是多少时,
7、+在实数范围内有意义? 分析:要使+在实数范围内有意义,必须同时满足中的0和中的x+10 解:依题意,得 由得:x- 由得:x-1 当x-且x-1时,+在实数范围内有意义 例4(1)已知y=+5,求的值(答案:2)(2)若+=0,求a2004+b2004的值(答案:) 五、归纳小结(学生活动,老师点评) 本节课要掌握: 1形如(a0)的式子叫做二次根式,“”称为二次根号 2要使二次根式在实数范围内有意义,必须满足被开方数是非负数 六、布置作业 1P5复习巩固1、综合应用52.课后作业:同步训练教学反思:16.1 二次根式(2)第二课时 教学内容 1(a0)是一个非负数; 2()2=a(a0)教
8、学目标知识与技能:1、理解(a0)是一个非负数和()2=a(a0),并利用它们进行计算和化简2、通过复习二次根式的概念,用逻辑推理的方法推出(a0)是一个非负数,用具体数据结合算术平方根的意义导出()2=a(a0);最后运用结论严谨解题过程与方法:1、在明确()2=a(a0)的算理的过程中,感受数学的实用性;2、课堂计算通过小组合作交流,培养学生的合作意识。情感态度与价值观:通过二次根式的相关计算,进而解决一些实际问题,培养学生解决问题的能力。 教学重难点 1重点:(a0)是一个非负数;()2=a(a0)及其运用2难点、:用分类思想的方法导出(a0)是一个非负数;用探究的方法导出()2=a(a
9、0)教学方法:讲解练习法教学准备:多媒体课件 教学过程 一、复习引入 (学生活动)口答 1什么叫二次根式? 2当a0时,叫什么?当a0;(2)a20;(3)a2+2a+1=(a+1)0;(4)4x2-12x+9=(2x)2-22x3+32=(2x-3)20所以上面的4题都可以运用()2=a(a0)的重要结论解题 解:(1)因为x0,所以x+10 ()2=x+1 (2)a20,()2=a2 (3)a2+2a+1=(a+1)2 又(a+1)20,a2+2a+10 ,=a2+2a+1 (4)4x2-12x+9=(2x)2-22x3+32=(2x-3)2 又(2x-3)204x2-12x+90,()2
10、=4x2-12x+9例3在实数范围内分解下列因式: (1)x2-3 (2)x4-4 (3) 2x2-3分析:(略) 五、归纳小结 本节课应掌握: 1(a0)是一个非负数; 2()2=a(a0);反之:a=()2(a0) 六、布置作业 1教材P5 复习巩固2(1)、(2) P6 73.课后作业:基础训练教学反思:16.1 二次根式(3)第三课时 教学内容 a(a0) 教学目标 知识与技能:1、 理解=a(a0)并利用它进行计算和化简2、通过具体数据的解答,探究=a(a0),并利用这个结论解决具体问题过程与方法:课堂计算通过小组合作交流,培养学生的合作意识,提高竞争意识。情感态度与价值观:通过二次
11、根式的相关计算,进而解决一些实际问题,培养学生解决问题的能力。 教学重难点关键 1重点:a(a0)2难点:探究结论教学方法:练习法教学准备:多媒体课件 教学过程 一、复习引入 老师口述并板收上两节课的重要内容; 1形如(a0)的式子叫做二次根式; 2(a0)是一个非负数; 3()2a(a0) 那么,我们猜想当a0时,=a是否也成立呢?下面我们就来探究这个问题 二、探究新知 (学生活动)填空: =_;=_;=_; =_;=_;=_ (老师点评):根据算术平方根的意义,我们可以得到: =2;=0.01;=;=;=0;= 因此,一般地:=a(a0) 例1 化简 (1) (2) (3) (4)分析:因
12、为(1)9=-32,(2)(-4)2=42,(3)25=52,(4)(-3)2=32,所以都可运用=a(a0)去化简解:(1)=3 (2)=4 (3)=5 (4)=3 三、巩固练习 教材P5练习2 四、应用拓展 例2 填空:当a0时,=_;当aa,则a可以是什么数? 分析:=a(a0),要填第一个空格可以根据这个结论,第二空格就不行,应变形,使“( )2”中的数是正数,因为,当a0时,=,那么-a0 (1)根据结论求条件;(2)根据第二个填空的分析,逆向思想;(3)根据(1)、(2)可知=a,而a要大于a,只有什么时候才能保证呢?aa,即使aa所以a不存在;当aa,即使-aa,a0综上,a2,
13、化简-分析:(略) 五、归纳小结 本节课应掌握:=a(a0)及其运用,同时理解当a、0),反过来=(a0,b0)及利用它们进行计算和化简 教学目标 知识与技能:1、 理解=(a0,b0)和=(a0,b0)及利用它们进行运算2、利用具体数据,通过学生练习活动,发现规律,归纳出除法规定,并用逆向思维写出逆向等式及利用它们进行计算和化简过程与方法:1、发展有条理的思考和语言表达能力。2、培养化归的数学思想。情感态度与价值观:在经历二次根式乘除法运算法则的过程中,获得成就感,建立学习数学的信心和兴趣。 教学重难点 1重点:理解=(a0,b0),=(a0,b0)及利用它们进行计算和化简2难点:发现规律,
14、归纳出二次根式的除法规定教学方法:引导探索发现教学准备:多媒体课件 教学过程 一、复习引入 (学生活动)请同学们完成下列各题: 1写出二次根式的乘法规定及逆向等式 2填空 (1)=_,=_; (2)=_,=_; (3)=_,=_; (4)=_,=_规律:_;_;_;_ 3利用计算器计算填空: (1)=_,(2)=_,(3)=_,(4)=_ 规律:_;_;_;_。 每组推荐一名学生上台阐述运算结果 (老师点评) 二、探索新知 刚才同学们都练习都很好,上台的同学也回答得十分准确,根据大家的练习和回答,我们可以得到: 一般地,对二次根式的除法规定:=(a0,b0),反过来,=(a0,b0) 下面我们
15、利用这个规定来计算和化简一些题目 例1计算:(1) (2) (3) (4) 分析:上面4小题利用=(a0,b0)便可直接得出答案解:(1)=2 (2)=2(3)=2(4)=2 例2化简: (1) (2) (3) (4) 分析:直接利用=(a0,b0)就可以达到化简之目的解:(1)= (2)= (3)= (4)= 三、巩固练习 教材P11练习1 四、应用拓展 例3已知,且x为偶数,求(1+x)的值分析:式子=,只有a0,b0时才能成立因此得到9-x0且x-60,即6x9,又因为x为偶数,所以x=8 解:由题意得,即 60)和=(a0,b0)及其运用 六、布置作业 1教材P12 习题212 2、7
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 八年 级数 下册 表格 式全册 教案 编辑 打印

限制150内