2020高考数学(文)专项复习《概率统计》含答案解析.doc
《2020高考数学(文)专项复习《概率统计》含答案解析.doc》由会员分享,可在线阅读,更多相关《2020高考数学(文)专项复习《概率统计》含答案解析.doc(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、概率统计统计是研究如何合理收集、整理、分析数据的学科,为人们制定决策提供依据概率是研究随机现象规律的学科,为人们认识客观世界提供重要的思维模式和解决问题的方法统计一章介绍随机抽样、样本估计总体、线性回归的基本方法,通过对典型案例的讨论,了解和使用一些常用的统计方法,进一步体会运用统计方法解决实际问题的基本思想,认识统计方法在决策中的作用概率一章介绍随机现象与概率的意义、古典概型及几何概型等内容,并能用所学知识解决一些简单的实际问题,进一步体会概率模型的作用及运用概率思考问题的特点,初步形成用随机观念观察、分析问题的意识101 概率(一)【知识要点】1事件与基本事件空间:随机事件:当我们在同样的
2、条件下重复进行试验时,有的结果始终不会发生,它称为不可能事件;有的结果在每次试验中一定会发生,它称为必然事件;在试验中可能发生也可能不发生的结果称为随机事件,随机事件简称为事件基本事件与基本事件空间:在一次试验中我们常常要关心的是所有可能发生的基本结果,它们是试验中不能再分的最简单的随机事件,其他事件可以用它们来描述,这样的事件称为基本事件所有基本事件构成的集合叫做基本事件空间,常用W 表示2频率与概率频率:在相同的条件S下,重复n次试验,观察某个事件A是否出现,称n次试验中事件A的出现次数m为事件A出现的频数,称事件A出现的比例为事件A出现的频率概率:一般的,在n次重复进行的试验中,事件A发
3、生的频率,当n很大时总是在某个常数附近摆动,随着n的增加,摆动幅度越来越小,这时就把这个常数叫做事件A的概率,记做P(A)显然有0P(A)1不可能事件的概率为0,必然事件的概率为1,随机事件的概率在(0,1)之间3互斥事件的概率加法公式事件的并:由事件A或B至少有一个发生构成的事件C称为事件A与B的并,记做CAB互斥事件:不可能同时发生的两个事件称为互斥事件互斥事件加法公式:如果事件A、B互斥,则事件AB发生的概率等于这两个事件分别发生的概率和,即P(AB)P(A)P(B)如果A1,A2,An两两互斥,那么事件A1A2An发生的概率,等于这n个事件分别发生的概率和,即P(A1A2An)P(A1
4、)P(A2)P(An)对立事件:不能同时发生且必有一个发生的两个事件叫做互为对立事件事件A的对立事件记作,满足P()1P(A)概率的一般加法公式(选学):事件A和B同时发生构成的事件D,称为事件A与B的交(积),记作DAB在古典概型中,P(AB)P(A)P(B)P(AB)4古典概型古典概型:一次试验有下面两个特征:(1)有限性,在一次试验中可能出现的结果只有有限个,即只有有限个不同的基本事件;(2)等可能性,每个基本事件发生的可能性是均等的,则称这个试验为古典概型古典概型的性质:对于古典概型,如果试验的n个基本事件为A1,A2,An,则有P(A1A2An)1且概率的古典定义:在古典概型中,如果
5、试验的基本事件总数为n(W ),随机事件A包含的基本事件数为n(A),则p(A),即5几何概型几何概型:一次试验具有这样的特征:事件A理解为区域W的一个子区域A,A的概率只与子区域A的几何度量(长度、面积或体积)成正比,而与A的位置和形状无关,这样的试验称为几何概型几何概型的特点:(1)无限性:一次试验中可能出现的结果有无穷多个;(2)等可能性,每个基本事件发生的可能性相等几何概型中事件A的概率定义:,其中m W 表示区域W 的几何度量,m A表示子区域A的几何度量随机数:就是在一定范围内随机产生的数,并且得到这个范围内的每一个数的机会均等计算机随机模拟法(蒙特卡罗方法)是利用模型来研究某种现
6、象的性质的一种有效方法,可以节约大量的人力物力【复习要求】1了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别2了解两个互斥事件的概率加法公式3理解古典概型及其概率计算公式,会计算一些随机事件所含的基本事件数及事件发生的概率4了解随机数的意义,了解几何概型的意义【例题分析】例1 国家射击队的某队员射击一次,命中710环的概率如下表: 命中环数10环9环8环7环概率0.320.280.180.12求该队员射击一次,(1)射中9环或10环的概率;(2)至少命中8环的概率;(3)命中不足8环的概率【分析】射击运动员一次射击只能命中1个环数,命中不同的环数是互斥事件,射中9
7、环或10环的概率等于射中9环与射中10环的概率和命中不足8环所包含的事件较多,而其对立事件为“至少命中8环”,可先求其对立事件的概率,再通过P(A)1P()求解解:设事件“射击一次,命中k环”为事件Ak(kN,k10),则事件Ak彼此互斥(1)记“射击一次,射中9环或10环”为事件A,则P(A)P(A10)P(A9)0.60(2)记“射击一次,至少命中8环”为事件B,则P(B)P(A10)P(A9)P(A8)0.78(3)“射击一次,命中不足8环”为事件B的对立事件,则P()1P(B)0.22【评析】解决概率问题时,要先分清所求事件由哪些事件组成,分析是否是互斥事件,再决定用哪个公式当用互斥事
8、件的概率加法公式解题时,要学会不重不漏的将事件拆为几个互斥事件,要善于用对立事件解题例2 现有8名奥运会志愿者,其中志愿者A1,A2,A3通晓日语,B1,B2,B3通晓俄语,C1,C2通晓韩语从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组()求A1被选中的概率;()求B1和C1不全被选中的概率【分析】本题是一个古典概型的问题,可以直接用概率公式求解解:()从8人中选出日语、俄语和韩语志愿者各1名,其一切可能的结果组成的基本事件空间W(A1,B1,C1),(A1,B1,C2),(A1,B2,C1),(A1,B2,C2),(A1,B3,C1),(A1,B3,C2),(A2,B1,C1),
9、(A2,B1,C2),(A2,B2,C1),(A2,B2,C2),(A2,B3,C1),(A2,B3,C2),(A3,B1,C1),(A3,B1,C2),(A3,B2,C1),(A3,B2,C2),(A3,B3,C1),(A3,B3,C2)由18个基本事件组成由于每一个基本事件被抽取的机会均等,因此这些基本事件的发生是等可能的用M表示“A1恰被选中”这一事件,则M(A1,B1,C1),(A1,B1,C2),(A1,B2,C1),(A1,B2,C2),(A1,B3,C1),(A1,B3,C2)事件M由6个基本事件组成,因而()用N表示“B1,C1不全被选中”这一事件,则其对立事件表示“B1,C1
10、全被选中”这一事件,由于(A1,B1,C1),(A2,B1,C1),(A3,B1,C1),事件由3个基本事件组成,所以,由对立事件的概率公式得【评析】古典概型解决概率问题时,选定基本事件空间并计算其所含基本事件的个数是重要的一步本题中选定“从8人中选出日语、俄语和韩语志愿者各1名,其一切可能的结果”为基本事件空间,计算时采用列举法,也可以利用乘法计数原理计算33218本题第一问还可以选定“从通晓日语的3人中选出1人的可能结果”为基本事件空间,共有3个基本事件,选出A1只有一种可能,故所求概率为例3 (1)两根相距6米的木杆上系一根绳子,并在绳子上挂一盏灯,则灯与两端距离都大于2米的概率是_(2
11、)甲乙两人约定在6点到7点之间在某处会面,并约好先到者等候另一人一刻钟,过时即可离去则两人能会面的概率是_(3)正方体内有一个内切球,则在正方体内任取一点,这个点在球内的概率为_【分析】这三个题都可转化为几何概率问题求解分别转化为线段长度、图形面积、几何体体积问题求解解:(1)本题可转化为:“在长为6m的线段上随机取点,恰好落在2m到4m间的概率为多少?”易求得(2)本题可转化为面积问题:即“阴影部分面积占总面积的多少?”,解得(3)本题可转化为体积问题:即“内切球的体积与正方体体积之比是多少?”解得【评析】几何概型也是一种概率模型,它具有等可能性和无限性两个特点解题的关键是要建立模型,将实际
12、问题转化为几何概率问题基本步骤是:把基本事件空间转化为与之对应的区域W;把随机事件A转化为与之对应的区域A;利用概率公式计算常用的几何度量包括:长度、面积、体积例4 设有关于x的一元二次方程x22axb20()若a是从0,1,2,3四个数中任取的一个数,b是从0,1,2三个数中任取的一个数,求上述方程有实根的概率;()若a是从区间0,3任取的一个数,b是从区间0,2任取的一个数,求上述方程有实根的概率【分析】本题第一问是古典概型问题,第二问由于a、b在实数区间选取,可以转化为几何概型问题求解解:设事件A为“方程x22axb20有实根”当a0,b0时,方程x22axb20有实根的充要条件为ab(
13、)基本事件共12个:(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2)其中第一个数表示a的取值,第二个数表示b的取值事件A中包含9个基本事件,事件A发生的概率为()试验的全部结果所构成的区域为(a,b)0a3,0b2构成事件A的区域为(a,b)0a3,0b2,ab所以所求的概率为【评析】几何概型与古典概型的每个基本事件发生的可能性是均等的,只是几何概型的基本事件有无限个,而古典概型的基本事件有有限个在具体问题中,不能因为古典概型的基本事件的个数多而误认为是几何概型练习101一、选择题1下列随机事件的频率
14、和概率的关系中哪个是正确的( )A频率就是概率B频率是客观存在的,与试验次数无关C随着试验次数增加,频率一般会越来越接近概率D概率是随机的,在试验前不能确定2从装有2个黑球2个白球的口袋中任取2个球,那么互斥而不对立的两个事件是( )A至少有一个白球,都是白球B至少有一个白球,至少有一个红球C恰有一个白球,恰有两个白球D至少有一个白球,都是红球3考察正方体6个面的中心,甲从这6个点中任意选两个点连成直线,乙也从这6个点中任意选两个点连成直线,则所得的两条直线相互平行但不重合的概率等于( )ABCD二、填空题4甲、乙二人掷同一枚骰子各一次如果谁掷的点数大谁就取胜,则甲取胜的概率为_5在平面直角坐
15、标系xoy中,设D是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E是到原点的距离不大于1的点构成的区域,向D中随机投一点,则落入E中概率为_三、解答题6已知集合A42,0,1,3,5,在平面直角坐标系中点M(x,y)的坐标满足xA,yA计算:(1)点M恰在第二象限的概率;(2)点M不在x轴上的概率;(3)点M恰好落在区域上的概率102 统 计【知识要点】1随机抽样总体、个体、样本:把所考察对象的某一个数值指标的全体构成的集合看成总体,构成总体的每一个元素称为个体,从总体中抽出若干个体所组成的集合叫做样本随机抽样:抽样时,保证每一个个体都可能被抽到,且每个个体被抽到的机会均等,满足这样条件的
16、抽样为随机抽样简单随机抽样:从元素个数为N的总体中,不放回的抽取容量为n的样本,如果每一次抽样时,总体中的各个个体有相同的可能性被抽到,这种抽样方法叫简单随机抽样系统抽样:当总体个数很大时,可将总体分成均匀的若干部分,然后按照预先制定的规则从每一部分抽取一个个体得到所需要的样本,这种抽样的方式叫做系统抽样分层抽样:当总体由有明显差异的几部分组成时,将总体中各个个体按某种特征分成若干个互不重叠的几部分,每一部分叫做层,在各层中按层在总体中所占比例进行简单随机抽样或系统抽样,这种抽样方法叫做分层抽样三种抽样方法的比较类别共同点各自特点联系适用范围简单随机抽样(1)抽样过程中每个个体被抽到的可能性相
17、等(2)每次抽出个体后不再将它放回,即不放回抽样从总体中逐个抽取总体个数较少系统抽样将总体均分成几部分,按预先制定的规则在各部分抽取在起始部分抽样时采用简单随机抽样总体个数较多分层抽样将总体分成几层,分层进行抽取分层抽样时采用简单随机抽样或系统抽样总体由差异明显的几部分组成2用样本的频率分布估计总体的频率分布常用频率分布表、频率分布直方图、频率分布折线图、茎叶图等统计图表来表示样本数据,观察样本数据的特征,从而估计总体的分布情况频率分布(表)直方图的画法步骤:(1)计算极差(用样本数据的最大值减去最小值)(2)决定组数与组距(组数组距极差)(3)决定分点(4)列频率分布表(5)绘制频率分布直方
18、图易见直方图中各个小长方形面积等于相应各组的频率,所有小长方形面积之和等于1频率分布折线图:连结频率分布直方图各个长方形上边的中点,就得到频率分布折线图总体密度曲线:随着样本容量的增加,分组的组距不断缩小,相应的频率分布折线图就会越来越接近于一条光滑曲线,这条光滑曲线就叫做总体密度曲线总体密度曲线精确地反映了一个总体在各个区域内取值的规律茎叶图:茎指中间的一列数,叶是从茎的旁边生长出来的数在样本数据较少时,茎叶图表示数据的效果较好它的突出优点是:统计图中没有原始数据的损失,所有的数据信息都可以从茎叶图中得到;茎叶图可随时记录,方便表示3用样本的数字特征估计总体的数字特征样本数据的平均数:如果有
19、n个数x1,x2,xn,那么叫做这n个数的平均数标准差:样本数据到平均数的一种平均距离,一般用s表示,其中方差:标准差的平方s2叫做方差4两个变量间的关系散点图:两个变量的关系可通过它们所对应的点在平面上表现出来,这些点对应的图形叫做散点图线性相关:若两个变量的散点图中所有点看上去都在一条直线附近波动,则这两个变量可近似看成具有线性相关关系回归直线方程:从散点图上看,如果这些点从整体上看大致分布在通过散点图中心一条直线附近,则这条直线叫做这些数据点的回归直线方程,记作bxa,其中b叫回归系数最小二乘法:假设我们已经得到两个具有线性相关关系的变量的一组数组,求得,这时离差最小,所求回归直线方程是
20、.这种求回归直线的方法称为最小二乘法【复习要求】1会用简单随机抽样方法从总体中抽取样本,了解分层抽样和系统抽样方法2了解分布的意义和作用,会列频率分布表,会画频率分布直方图、频率折线图、茎叶图,理解它们各自的特点3理解样本数据标准差的意义和作用,会计算样本数据平均数、标准差,并给出合理解释4会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想5会作两个有关联变量的数据的散点图,会利用散点图认识变量间的相关关系了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程【例题分析】例1 某单位200名职工的年龄分布情况如图,现要从中抽取
21、40名职工作样本,用系统抽样法,将全体职工随机按1200编号,并按编号顺序平均分为40组(15号,610号,196200号)若第5组抽出的号码为22,则第8组抽出的号码应是_,若用分层抽样方法,则40岁以下年龄段应抽取_人【分析】由已知系统抽样的组距为5,所以相邻组间的号码相差5;由饼形图可知200名职工中,50岁以上人数:4050岁人数:40岁以下人数235,总样本为40人,分层抽样抽取每层人数比例为235解:37;20【评析】系统抽样的特征是等距,也就是只要在一组内选定号码,其余各组的号码随之选定,所选相邻号码的间隔为组距分层抽样的特征是按比例抽取,也就是每一层所选人数占总选出人数的比例与
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020高考数学(文)专项复习含答案解析 2020数学(文)高考专项复习含答案解析
限制150内