云南省大理州巍山县2019-2020学年八年级(下)期末数学试卷(含解析).doc
《云南省大理州巍山县2019-2020学年八年级(下)期末数学试卷(含解析).doc》由会员分享,可在线阅读,更多相关《云南省大理州巍山县2019-2020学年八年级(下)期末数学试卷(含解析).doc(17页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 2019-2020学年云南省大理州巍山县八年级第二学期期末数学试卷一、填空题(共6小题).1(3分)要使有意义,则x的取值范围是 2(3分)一次函数y2x6的图象与x轴的交点坐标为 3(3分)在平面直角坐标系中,点A,B,C的坐标分别是(0,0),(5,0),(2,3),若以点A,B,C,D为顶点的四边形是平行四边形,则符合条件的D点有 个4(3分)如表记录了甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数与方差:甲乙丙丁平均数(cm)375350375350方差s212.513.52.45.4根据表中数据,要从甲、乙、丙、丁中选择一名成绩好又发挥稳定的运动员参加决赛,应该选择 5(3分)四边
2、形ABCD为菱形,该菱形的周长为16,面积为8,则ABC为 度6(3分)李老师开车从甲地到相距240千米的乙地,如果油箱剩余油量y(升)与行驶里程x(千米)之间是一次函数关系,其图象如图所示,那么到达乙地时油箱剩余油量是 升二、选择题(共8小题).7(4分)下列二次根式中,最简二次根式是()ABCD8(4分)以下列各数为边长,能构成直角三角形的是()A1,2,2B1,2C4,5,6D1,1,9(4分)下列计算正确的是()A4B2C+D1510(4分)矩形具有而菱形不具有的性质是()A两组对边分别平行B对角线相等C对角线互相平分D两组对角分别相等11(4分)一次函数y5x+3不经过第()象限A一
3、B二C三D四12(4分)在四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()AABDC,ADBCBABDC,ADBCCAOCO,BODODABDC,ADBC13(4分)如图,函数y2x和yax+4的图象相交于点A(m,3),则不等式2xax+4的解集为()AxBx3CxDx314(4分)正方形A1B1C1O,A2B2C2C1,A3B3C3C2,按如图所示的方式放置点A1,A2,A3,和点C1,C2,C3,分别在直线ykx+b(k0)和x轴上,已知点B1(1,1),B2(3,2),则Bn的坐标是()A(2n1,2n1)B(2n1+1,2n1)C(2n1,
4、2n1)D(2n1,n)三、解答题(共70分)15(8分)计算:(1)(2)16(5分)化简求值:,其中a217(5分)如图,点E,F为ABCD的对角线BD上的两点,连接AE,CF,AEBCFD求证:AECF18(5分)已知:如图,在四边形ABCD中,B90,ABBC2,CD3,AD1,求DAB的度数19(9分)直线ykx+b经过点A(1,0)、B(0,2)(1)求直线ykx+b的解析式;(2)若点C在x轴上,且SABC3SAOB,求出点C坐标20(9分)为了普及环保知识,增强环保意识,某中学组织了全校环保知识竞赛活动,初中各年级根据初赛成绩分别选出了10名同学参加决赛,这些选手的决赛成绩(满
5、分为100分)如下表所示:决赛成绩(单位:分)初一成绩80 86 88 80 88 99 80 74 91 89初二成绩85 85 87 97 85 76 88 77 87 88初三成绩82 80 78 78 81 96 97 88 89 86(1)请你填写下表中的a ,b ,c ;平均数众数中位数初一年级a8087初二年级85.5b86初三年级85.578c(2)从以下两个不同的角度对三个年级的决赛成绩进行分析:从众数和平均数相结合看(分析哪个年级成绩好些);从平均数和中位数相结合看(分析哪个年级成绩好些)(3)如果在每个年级参加决赛的选手中分别选出3人参加总决赛,你认为哪个年级的实力更强些
6、?并说明理由21(8分)如图,矩形ABCD的长为8,宽为6,现将矩形沿对角线BD折叠,C点到达C处,CB交AD于E(1)判断EBD的形状,并说明理由;(2)求DE的长22(9分)如图是小阳同学所走的路程s(米)与时间t(分钟)的函数关系图,观察图中所提供的信息,解答下列问题:(1)小阳同学在前5分钟内的平均速度是多少?(2)小阳同学在中途停了多长时间?(3)当10t20时,求s与t的函数关系式23(12分)在抗击新冠肺炎的非常时期,某医药器械厂接受了生产一批高质量医用口罩的任务,要求在8天之内(含8天)生产A型和B型两种型号的口罩共5万只,其中A型口罩不得少于1.8万只,该厂的生产能力是:若生
7、产A型口罩每天能生产0.6万只,若生产B型口罩每天能生产0.8万只,已知生产一只A型口罩可获利0.5元,生产一只B型口罩可获利0.3元若设该厂在这次任务中生产了A型口罩x万只(1)该厂生产A型口罩可获利润 万元,生产B型口罩可获利润 万元(2)设该厂这次生产口罩的总利润是y万元,试写出y关于x的函数关系式,并求出自变量x的取值范围;(3)在完成任务的前提下,如何安排生产A型和B型口罩的只数,使获得的总利润最大,最大利润是多少?(4)若要在最短时间内完成任务,如何来安排生产A型和B型口罩的只数?最短时间是几天?参考答案一填空题(本大题共6个小题,每小题3分,满分18分)1(3分)要使有意义,则x
8、的取值范围是x2解:有意义,x20,x2故答案为x22(3分)一次函数y2x6的图象与x轴的交点坐标为(3,0)解:令y0得:2x60,解得:x3则函数与x轴的交点坐标是(3,0)故答案是:(3,0)3(3分)在平面直角坐标系中,点A,B,C的坐标分别是(0,0),(5,0),(2,3),若以点A,B,C,D为顶点的四边形是平行四边形,则符合条件的D点有3个解:如图所示,AB为对角线时,点D的坐标为(3,3),BC为对角线时,点D的坐标为(7,3),AC为对角线时,点D的坐标为(3,3),综上所述,点D的坐标是(7,3)(3,3)(3,3)故答案为:34(3分)如表记录了甲、乙、丙、丁四名跳远
9、运动员选拔赛成绩的平均数与方差:甲乙丙丁平均数(cm)375350375350方差s212.513.52.45.4根据表中数据,要从甲、乙、丙、丁中选择一名成绩好又发挥稳定的运动员参加决赛,应该选择丙解:乙和丁的平均数最小,从甲和丙中选择一人参加比赛,丙的方差最小,选择丙参赛,故答案为:丙5(3分)四边形ABCD为菱形,该菱形的周长为16,面积为8,则ABC为30或150度解:如图1所示:当A为钝角,过A作AEBC,菱形ABCD的周长为l6,AB4,面积为8,AE2,ABC30,当A为锐角是,过D作DEAB,菱形ABCD的周长为l6,AD4,面积为8,DE2,A30,ABC150,故答案为:3
10、0或1506(3分)李老师开车从甲地到相距240千米的乙地,如果油箱剩余油量y(升)与行驶里程x(千米)之间是一次函数关系,其图象如图所示,那么到达乙地时油箱剩余油量是2升解:设y与x之间的函数关系式为ykx+b,由函数图象,得,解得:,则yx+35当x240时,y240+3.52(升)故答案为:2二、选择题(每小题4分,共32分)7(4分)下列二次根式中,最简二次根式是()ABCD解:A、,不是最简二次根式,本选项不合题意;B、是最简二次根式,本选项符合题意;C、,不是最简二次根式,本选项不合题意;D、,不是最简二次根式,本选项不合题意;故选:B8(4分)以下列各数为边长,能构成直角三角形的
11、是()A1,2,2B1,2C4,5,6D1,1,解:A、12+2222,不符合勾股定理的逆定理,不能构成直角三角形;B、12+()222,符合勾股定理的逆定理,能构成直角三角形;C、42+5262,不符合勾股定理的逆定理,不能构成直角三角形;D、12+12()2,不符合勾股定理的逆定理,不能构成直角三角形故选:B9(4分)下列计算正确的是()A4B2C+D15解:A、原式2,所以A选项错误;B、原式2,所以B选项正确;C、原式2+,所以C选项错误;D、原式15,所以D选项错误故选:B10(4分)矩形具有而菱形不具有的性质是()A两组对边分别平行B对角线相等C对角线互相平分D两组对角分别相等解:
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初中数学试卷 初中数学期中试卷 初中数学联考试卷
限制150内