《九年级数学一元二次方程教案 (2).doc》由会员分享,可在线阅读,更多相关《九年级数学一元二次方程教案 (2).doc(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、YOUR LOGO原 创 文 档 请 勿 盗 版学校教师备课笔记年级九学科数学主备教师复备教师课题配方法解一元二次方程课型新授教材分析对于一元二次方程,配方法是解法中的通法,它的推导建立在直接开平方法的基础上,他又是公式法的基础:同时一元二次方程又是今后学生学习二次函数等知识的基础。学情分析1,九年级学生学习了平方根的意义。即如果X2=a,那么X=a。;他们还学习了完全平方年级学生学习了平方根的意义。即如果如果X2=a,那么X=a他们还学习了完全平方式。2.学生学习本节的障碍。学生对配方法怎样配系数是个难点,老师应该予以简单明白、深入浅出的分析教学目标1.会用直接开平方法解形如(X+m)2=n
2、(n0)2.会用配方法解简单的数字系数的一元二次方程。3理解配方法;知道“配方”是一种常用的数学方法。4.了解用配方法解一元二次方程的基本步骤。教学重点难点分析教学重点:用配方法解一元二次方程教学难点;理解配方法的基本过程教学策略分析1.通过用配方法将一元二次方程变形的过程,让学生进一步体会转化的思想方法,并增强他们的数学应用意识和能力,激发学生的学习兴趣。2能根据具体问题的实际意义,验证结果的合理性。课前准备教师老师必须从学生的认知结构和心理特征出发,分析初中学生的心理特征,他们有强烈的好奇心和求知欲。当他们在解决实际问题时发现要解的方程不再是以前所学过的一元一次方程或可化为一元一次方程的其
3、他方程时,他们自然会想进一步研究和探索解方程的问题学生从学生的认知结构上来看,前面我们已经系统的研究了完全平方式、二次根式,这就为我们继续研究用配方法姐一元二次方程奠定了基础。教 学环 节教学活动教师活动学生活动教师活动预设学生行为设计意图一、复习旧知识(提问)1、如果X2=a,(a0)那么X=2、如果X2+2Xy+y2=9,那么X+y=?教学环节X2=9X=?巩固直接开平方法解方程为配方法打下基础二、导入新课,讲授新知识1、填空:X2+8X+()2=(X+_)2X2-X+()2=(X-_)2X2+MX+()2=()22、X2+8X+7=0如何变形可得到(X+4)2=9X2+8X+7=0X2+
4、8X=-7X2+8X+( )2=( )2即(X+4)2=93、3X2-6X+2=0如何变形可得到(X-1)2=3X2-6X+2=03X2-6X=-2X2-2X=-X2-2X+1=-+1(X-1)2=3、怎样解方程X2+6X-16=0移项X2+6X=16配方X2+6X+9=16+9左边写成完全平方式(X+3)2=25X+3=5X+3=5或X+3=-5X1=2,X2=-84,4,X+问 的名称分别为什么?问的名称分别为什么?注重解题步骤学会利用完全平方知识填空 初步配方为后面学习打下基础为移项为配方为移项为二次项系数化为1为配方写成完全平方式1、移项:把常数项移到方程的右边;2、配方:方程两边都加
5、上一次项系数绝对值一半的平方;3、变形:方程左边分解因式,右边合并同类项;4、开方:根据平方根的意义,方程两边开平方;5、求解:解一元一次方程;6、定解:写出原方程的解三、巩固知识例题点拨:例1解方程(1)2X2+1=3X(2)3 X28 X3=0分析;根据导入新课知识可以配方变形,再用直接开平方法求解例2解方程(1)X2+8X+9=0(2)4X2-12X+9=0(3)3X2-6X+3=-1例3解方程(2X+1)(X+2)+2X-18=0此方程可整理为2X2+7X-16=0例4证明方程2X2-5X+7=0没有实数根(1)X1=5,X2=8(2)X1=1,X2=-注重配方过程,得出两个实数根。四
6、、拓展延伸1、用配方法解下列方程(1)X2+8X=33(2)2X2-3X+4=0(3)X2-X+1=02、当x为何值时,代数式X2-8X+12=X3、求证:方程有两个相等的实数根?4、解方程:3X2+2x-a=0怎样判断?学生按时完成一元二次方程节的三种不同形式:(1)有两个不等的实数根;(2)有两个相等的实数根(3)没有实数根。让学生明白需要先整理成一般形式后才能配方。计算一元二次方程根的判别式1题为配方法解方程的基本题型2、3题为变式方法解4题为开放性使用型题五、小结提高解一元二次方程的步骤:(b2-4ac0时)1、化为一般形式2、移项3、二次项系数化为14、配方5、左边写成完全平方的形式
7、6、降次直接开平方7、求解 解一元一次方程定解等要求学生通过讨论自己归纳得出步骤。引导学生回顾目标,明确重难、难点六、作业布置1、复习巩固所讲内容2、完成课后练习和习题相关作业;3、完成练习册相关作业。即时练习,巩固所学知识。板书设计用配方法解方程ax+bx+c=0(a0)的方法:化1:把二次项系数化为1移项:把常数项移到方程的右边配方:方程两边都加上一次项系数绝对值一半的平方变形:方程左分解因式,右边合并同类开方:根据平方根意义,方程两边开平方求解:解一元一次方程定解:写出原方程的解教学反思在教学中最关键的是让学生掌握配方,配方的对象是含有未知数的二次三项式,其理论依据是完全平方式,配方的方法是通过添项:加上一次项系数一半的平方构成完全平方式,对学生来说,要理解和掌握它,确实感到困难,因此在教学过程中及课后批改中发现学生出现以下几个问题:1.在利用添项来使等式左边配成一个完全平方公式时,等式的右边忘了加。2.在开平方这一步骤中,学生要么只有正、没有负的,要么右边忘了开方。3.当一元二次方程有二次项的系数不为1时,在添项这一步骤时,没有将系数化为1,就直接加上一次项系数一半的平方。因此,要纠正以上错误,必须让学生多做练习、上台表演、当场讲评,才能熟练掌握。
限制150内