高等代数(北大版)第5章习题参考答案.doc
《高等代数(北大版)第5章习题参考答案.doc》由会员分享,可在线阅读,更多相关《高等代数(北大版)第5章习题参考答案.doc(41页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、YOUR LOGO原 创 文 档 请 勿 盗 版第五章二次型1用非退化线性替换化下列二次型为标准形,并利用矩阵验算所得结果;1)4x1 x22x1 x32x2 x3 ;2222)x12 x1 x22 x24x2 x34x3;223)x13x22x1 x22x1 x36x2 x3 ;4) 8x1 x42x3 x42x2 x38x2 x4 ;x1 x2x1 x3x1 x4x2 x3x2 x4x3 x4 ;5)2226)x12x2x44x1 x24x1 x32x1 x42x2 x32x2 x42x3 x4;22227)x1x2x3x42x1x22x2 x32 x3 x4 ;解 1 )已知fx1 ,
2、x2 , x34 x1 x22 x1 x32x2 x3,先作非退化线性替换x1x2 x3y1y1 y3y2y2( 1)则22fx1 , x2 , x34 y14y24 y1 y322224y14 y1 y3y3y34y23222 y1y3y34 y2 ,再作非退化线性替换1212y1z1z3( 2)y2y3z2z3则原二次型地标准形为222fx1 , x2 , x3z14z2z3 ,最后将( 2)代入( 1),可得非退化线性替换为精品学习资料勤奋,为踏入成功之门地阶梯第 1 页,共 41 页1212z31212x1z1z2z3x2z1z2z3( 3)x3于为相应地替换矩阵为1212012121
3、120012010010110110001T10,且有100040001T AT;2222)已知fx1 , x2 , x3x12x1 x22x24x2 x34 x3 ,由配方法可得2222fx1 , x2 , x3x12x1x2x2x24x2 x34x322x1x2x22x3,于为可令y1y2y3x1x2 x3x22 x3,则原二次型地标准形为22fx1 , x2 , x3y1y2,且非退化线性替换为x1x2x3y1y2y3y22 y32 y3,相应地替换矩阵为100110221T,精品学习资料勤奋,为踏入成功之门地阶梯第 2 页,共 41 页且有11201200111012202410011
4、0221100010000T AT;22( 3)已知fx1 , x2 , x3x13x22 x1 x22 x1 x36x2 x3 ,由配方法可得22222fx1 , x2 , x3x12x1 x22x1 x32x2 x3x2x34x24x2 x3x322x1x2x32x2x3,于为可令y1y2y3x12x2x3x2x3x3,则原二次型地标准形为22fx1 , x2 , x3y1y2 ,且非退化线性替换为1232x1y1y2y312y312x2y2y3,x3相应地替换矩阵为12120321211T00,且有12120321211112320121200111133130100010000T AT
5、00;1( 4)已知fx1 , x2 , x3 , x48x1 x22x3 x42x2 x38x2 x4 ,精品学习资料勤奋,为踏入成功之门地阶梯第 3 页,共 41 页先作非退化线性替换x1x2 x3 x4y1y2 y3 y4y4,则2fx1 , x2 , x3 , x48y1 y48y42 y3 y42y2 y38y2 y421 y1 y21 y812121 y8248y2 yyy4123123221212188y1y2y32 y2 y322121218148y1y2y3y42y1y2y32 y2 y3 ,再作非退化线性替换y1y2y3y4z1z2 z2 z4z3z3,则221 z5 z3
6、 z5 z43 zfx , x , x , x8z2z123412341232884222z22z3 ,再令5434w1z1x2x3w2w3z2z3,125838w4z1z2z3z4则原二次型地标准形为2222fx1 , x2 , x3 , x42w12w22w38w4 ,且非退化线性替换为精品学习资料勤奋,为踏入成功之门地阶梯第 4 页,共 41 页1254w3w334x1w1w2w3w4x2x3w2w212,x4w1w4相应地替换矩阵为12001254110341101001T,且有2020000200008000T AT;( 5)已知fx1 , x2 , x3 , x4x1 x2x1 x
7、3x1 x4x2 x3x2 x4x3 x4 ,先作非退化线性替换x1x2 x3 x42 y1y2y3y4y2,则2fx1 , x2 , x3 , x42 y1 y2y22 y1 y32 y2 y32 y1 y42y2 y4y3 y421234222y1y2y3y4y3y4y4y1,再作非退化线性替换z1z2y1y1y2y3y4,12z3y3y4z4y4即精品学习资料勤奋,为踏入成功之门地阶梯第 5 页,共 41 页y1z112y2z1z2z3z4,12y3z3z4y4z4则原二次型地标准形为342222fx1 , x2 , x3 , x4且非退化线性替换为z1z2z3z4 ,12x1z1z2z
8、3z412x2z1z2z3z4,12x3z3z4x4z4相应地替换矩阵为1212121111111T,000010且有10000100001000034T AT;222( 6)已知fx1 , x2 , x3 , x4x12 x2x44x1 x24x1 x32x1x42x2 x32x2 x42x3 x4 ,由配方法可得22fx1 , x2 , x3 , x4x12x1 2x22x3x42x22x3x42222x22x3x42x2x42x2 x32 x2 x42x3 x4精品学习资料勤奋,为踏入成功之门地阶梯第 6 页,共 41 页23 x21 x21222,x2x2xx2 xxx12342343
9、4于为可令y1x12x22x3x432x412y2x2x3x4,y3y4x3x4则原二次型地标准形为12222fy12 y2y3 ,且非退化线性替换为x1y12y2y3y432y4x2y2y3y4,x3x4y3y4故替换矩阵为10002100132101111T,且有10000200001200000T AT;2222( 7)已知fx1 , x2 , x3 , x4x1x2x3x42x1 x22x2 x32x3 x4 ,由配方法可得222fx1 , x2 , x3 , x4x22x2x1x3x1x32 x1 x32x3 x4x42222x1x2x32 x1 x3x32x3 x4x4x32222
10、2x1x2x3x3x42x1 x3x3x1x12222x1x1x2x3x3x4x1x3,于为可令精品学习资料勤奋,为踏入成功之门地阶梯第 7 页,共 41 页y1y2y3y4x1x1 x3x1x2x3x4x3,则原二次型地标准形为2222fy1y2y2y4 ,且非退化线性替换为x1x2 x3 x4y1y2y1 y1y4y4 y3,y4相应地替换矩阵为1010000010111011T,且有1010000100000001T AT;()把上述二次型进一步化为规范形,分实系数、复系数两种情形;并写出所作地非退化线性替换;解 1 )已求得二次型fx1 , x2 , x34x1x22x1 x32x2
11、x3地标准形为222fy14 y23y3,且非退化线性替换为12121212x1y1y2y3,x2y1y2y3x3y3( 1)在实数域上,若作非退化线性替换精品学习资料勤奋,为踏入成功之门地阶梯第 8 页,共 41 页y1z312z1y2y3z2,可得二次型地规范形为222fz1z2z3 ;( 2)在复数域上,若作非退化线性替换y1iz112z1,y2z2y3可得二次型地规范形为222fz1z2z3 ;2 )已求得二次型222fx1 , x2 , x3x12 x1 x22 x24x2 x34x3地标准形为22fy1y2 ,且非退化线性替换为x1x2 x3y1y2y3y22 y32 y3,故该非
12、退化线性替换已将原二次型化为实数域上地规范形与复数域上地规范形22fy1y2 ;3)已求得二次型22fx1 , x2 , x3x13x22 x1 x22 x1 x36x2 x3地标准形为22fy1y2,且非退化线性替换为1232x1y1y2y312y312x2y2y3,x3精品学习资料勤奋,为踏入成功之门地阶梯第 9 页,共 41 页( 1)在实数域上,上面所作非退化线性替换已将二次型化为规范形,即22fy1y2 ;( 2)在复数域上,若作非退化线性替换y1y2y3z1iz 2z3;可得二次型地规范形为22fz1z2 ;( 3)已求得二次型fx1, x2 , x3 , x48x1x22x3 x
13、42x2 x38x2 x4地标准形为2222f2 y12 y22y38 y4 ,且非退化线性替换为1254y3y334x1y1y2y3y4x2x3y2y212,x4y1y4( 1)在实数域上,若作非退化线性替换1212121y1z4y2z2,y3z3y4z122可得二次型地规范形为2222fz1z2z3z2 ;( 2)在复数域上,若作非退化线性替换精品学习资料勤奋,为踏入成功之门地阶梯第 10 页,共 41 页iy1z1212i21y2z2,y3z3y4z422可得二次型地规范形为2222fz1z2z3z2 ;( 5)已求得二次型fx1 , x2 , x3 , x4x1 x2x1x3x1 x4
14、x2 x3x2 x4x3 x4地标准形为32y4 ,222fy1y2y34且非退化线性替换为12x1y1y2y3y412x2y1y2y3y4,12x3y3y4x4y4( 1)在实数域上,若作非退化线性替换y1y2 y3z2z1 z3,23y4z4可得二次型地规范形为2222fz1z2z3z4 ;( 2)在复数域上,若作非退化线性替换y1y2y3iz1z2 iz3,23y4iz 4精品学习资料勤奋,为踏入成功之门地阶梯第 11 页,共 41 页可得二次型地规范形为2222fz1z2z3z4 ;6)已求得二次型222fx1 , x2 , x3 , x4x12x2x44x1 x24x1x32 x1
15、x42x2 x32 x2 x42 x3 x4地标准形为12222fy12 y2y3 ,且非退化线性替换为x1y12 y2y3y432y4x2y2y3y4;x3x4y3y4( 1)在实数域上,若作非退化线性替换y1z212y2z3,y3y42 z1z4可得二次型地规范形为222fz1z2z3 ;( 2)在复数域上,若作非退化线性替换y1iz1iy2z2,2y3y42 z3z4可得二次型地规范形为222fz1z2z3 ;7)已求得二次型222fx1 , x2 , x3 , x4x12x2x44x1 x24x1 x32 x1 x42x2 x32x2 x42x3 x4地标准形为精品学习资料勤奋,为踏入
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高等 代数 北大 习题 参考答案
限制150内