《2022年初中数学知识点总结.docx》由会员分享,可在线阅读,更多相关《2022年初中数学知识点总结.docx(23页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2022年初中数学知识点总结 初中数学学问点大全有哪些你知道吗?初中数学应当多阅读和积累,可以使学生增长学问,使学生在学习中做到举一反三。一起来看看2022初中数学学问点总结,希望能帮助到大家! 初三数学学问点速记 1.有理数的加法运算:同号相加一边倒;异号相加大减小,符号跟着大的跑;肯定值相等零正好。【注】大减小是指肯定值的大小。 2.合并同类项:合并同类项,法则不能忘,只求系数和,字母、指数不变样。 3.去、添括号法则:去括号、添括号,关键看符号,括号前面是正号,去、添括号不变号,括号前面是负号,去、添括号都变号。 4.一元一次方程:已知未知要分别,分别方法就是移,加减移项要变号,乘除移了
2、要颠倒。 5.恒等变换:两个数字来相减,互换位置最常见,正负只看其指数,奇数变号偶不变。(a-b)2n+1=-(b-a)2n+1(a-b)2n=(b-a)2n 6.平方差公式:平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆。 7.完全平方:完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中心;首尾括号带平方,尾项符号随中心。 8.因式分解:一提(公因式)二套(公式)三分组,细看几项不离谱,两项只用平方差,三项十字相乘法,阵法娴熟不马虎,四项细致看清晰,若有三个平方数(项),就用一三来分组,否则二二去分组,五项、六项更多项,二三、三三试分组,以上若都行不通,拆项、
3、添项看清晰。 9.代入口决:挖去字母换上数(式),数字、字母都保留;换上分数或负数,给它带上小括弧,原括弧内出(现)括弧,逐级向下变括弧(小-中-大) 10.单项式运算:加、减、乘、除、乘(开)方,三级运算分得清,系数进行同级(运)算,指数运算降级(进)行。 11.一元一次不等式解题的一般步骤:去分母、去括号,移项时候要变号,同类项、合并好,再把系数来除掉,两边除(以)负数时,不等号改向别忘了。 12.一元一次不等式组的解集:大大取较大,小小取较小,小大,大小取中间,大小,小大无处找。 13.一元二次不等式、一元一次肯定值不等式的解集:大(鱼)于(吃)取两边,小(鱼)于(吃)取中间。 14.分
4、式混合运算法则:分式四则运算,依次乘除加减,乘除同级运算,除法符号须变(乘);乘法进行化简,因式分解在先,分子分母相约,然后再行运算;加减分母需同,分母化积关键;找出最简公分母,通分不是很难;变号必需两处,结果要求最简。 15.分式方程的解法步骤:同乘最简公分母,化成整式写清晰,求得解后须验根,原(根)留、增(根)舍别模糊。 16.最简根式的条件:最简根式三条件,号内不把分母含,幂指(数)根指(数)要互质,幂指比根指小一点。 17.特别点坐标特征:坐标平面点(x,y),横在前来纵在后;(+,+),(-,+),(-,-)和(+,-),四个象限分前后;X轴上y为0,x为0在Y轴。 18.象限角的平
5、分线:象限角的平分线,坐标特征有特点,一、三横纵都相等,二、四横纵确相反。 19.平行某轴的直线:平行某轴的直线,点的坐标有讲究,直线平行X轴,纵坐标相等横不同;直线平行于Y轴,点的横坐标仍照旧。 20.对称点坐标:对称点坐标要记牢,相反数位置莫混淆,X轴对称y相反,Y轴对称,x前面添负号;原点对称记,横纵坐标变符号。 21.自变量的取值范围:分式分母不为零,偶次根下负不行;零次幂底数不为零,整式、奇次根全能行。 22.函数图像的移动规律:若把一次函数解析式写成y=k(x+0)+b、二次函数的解析式写成y=a(x+h)2+k的形式,则用下面后的口诀左右平移在括号,上下平移在末稍,左正右负须牢记
6、,上正下负错不了。 23.一次函数图像与性质口诀:一次函数是直线,图像经过仨象限;正比例函数更简洁,经过原点始终线;两个系数k与b,作用之大莫小看,k是斜率定夹角,b与Y轴来相见,k为正来右上斜,x增减y增减;k为负来左下展,改变规律正相反;k的肯定值越大,线离横轴就越远。 24.二次函数图像与性质口诀:二次函数抛物线,图象对称是关键;开口、顶点和交点,它们确定图象现;开口、大小由a断,c与Y轴来相见,b的符号较特殊,符号与a相关联;顶点位置先找见,Y轴作为参考线,左同右异中为0,牢记心中莫混乱;顶点坐标最重要,一般式配方它就现,横标即为对称轴,纵标函数最值见。若求对称轴位置,符号反,一般、顶
7、点、交点式,不同表达能互换。 25.反比例函数图像与性质口诀:反比例函数有特点,双曲线相背离的远;k为正,图在一、三(象)限,k为负,图在二、四(象)限;图在一、三函函数减,两个分支分别减。图在二、四正相反,两个分支分别添;线越长越近轴,恒久与轴不沾边。 26.巧记三角函数定义:初中所学的三角函数有正弦、余弦、正切、余切,它们实际是三角形边的比值,可以把两个字用/隔开,再用下面的一句话记定义:一位不高超的厨子教徒弟杀鱼,说了这么一句话:正对鱼磷(余邻)直刀切。正:正弦或正切,对:对边即正是对;余:余弦或余弦,邻:邻边即余是邻;切是直角边。 27.三角函数的增减性:正增余减 28.特别三角函数值
8、记忆:首先记住30度、45度、60度的正弦值、余弦值的分母都是2、正切、余切的分母都是3,分子记口诀123,321,三九二十七既可。 29.平行四边形的判定:要证平行四边形,两个条件才能行,一证对边都相等,或证对边都平行,一组对边也可以,必需相等且平行。对角线,是个宝,相互平分跑不了,对角相等也有用,两组对角才能成。 30.梯形问题的协助线:移动梯形对角线,两腰之和成一线;平行移动一条腰,两腰同在现;延长两腰交一点,中有平行线;作出梯形两高线,矩形显示在眼前;已知腰上一中线,莫忘作出中位线。 31.添加协助线歌:协助线,怎么添?找出规律是关键,题中若有角(平)分线,可向两边作垂线;线段垂直平分
9、线,引向两端把线连,三角形边两中点,连接则成中位线;三角形中有中线,延长中线翻一番。 32.圆的证明歌:圆的证明不算难,常把半径直径连;有弦可作弦心距,它定垂直平分弦;直径是圆弦,直圆周角立上边,它若垂直平分弦,垂径、射影响耳边;还有与圆有关角,勿忘相互有关联,圆周、圆心、弦切角,细找关系把线连。同弧圆周角相等,证题用它最多见,圆中若有弦切角,夹弧找到就好办;圆有内接四边形,对角互补记心间,外角等于内对角,四边形定内接圆;直角相对或共弦,试试加个协助圆;若是证题打转转,四点共圆可解难;要想证明圆切线,垂直半径过外端,直线与圆有共点,证垂直来半径连,直线与圆未给点,需证半径作垂线;四边形有内切圆
10、,对边和等是条件;假如遇到圆与圆,弄清位置很关键,两圆相切作公切,两圆相交连公弦。 33.圆中比例线段:遇等积,改等比,横找竖找定相像;不相像,别生气,等线等比来代替,遇等比,改等积,引用射影和圆幂,平行线,转比例,两端各自找联系。 34.正多边形诀窍歌:份相等分割圆,n值必需大于三,依次连接各分点,内接正n边形在眼前. 35.经过分点做切线,切线相交n个点.n个交点做顶点,外切正n边形便出现.正n边形很美观,它有内接,外切圆,内接、外切都,两圆还是同心圆,它的图形轴对称,n条对称轴都过圆心点,假如n值为偶数,中心对称很便利.正n边形做计算,边心距、半径是关键,内切、外接圆半径,边心距、半径分
11、别换,分成直角三角形2n个整,依此计算便简洁. 36.函数学习口决:正比例函数是直线,图象肯定过圆点,k的正负是关键,确定直线的象限,负k经过二四限,x增大y在减,上下平移k不变,由引得到一次线,向上加b向下减,图象经过三个限,两点确定一条线,选定系数是关键。 37.反比例函数双曲线,待定只需一个点,正k落在一三限,x增大y在减,图象上面随意点,矩形面积都不变,对称轴是角分线x、y的依次可交换。 38.二次函数抛物线,选定须要三个点,a的正负开口判,c的大小y轴看,的符号最简便,x轴上数交点,a、b同号轴左边抛物线平移a不变,顶点牵着图象转,三种形式可变换,配方法作用最关键。 初中数学学问点总
12、结 代数部分:有理数、无理数、实数整式、分式、二次根式一元一次方程、一元二次方程、二(三)元一次方程组、二元二次方程组、分式方程、一元一次不等式函数(一次函数、二次函数、反比例函数) 几何部分:线段、角相交线、平行线三角形、四边形、相像形、圆。 1、实数的分类 有理数:整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限环循小数)都是有理数。如:-3,0.231,0.737373. 无理数:无限不环循小数叫做无理数如:,-,0.1010010001.(两个1之间依次多1个0)。 实数:有理数和无理数统称为实数。 2、无理数 在理解无理数时,要抓住无限不循环这一时之,它包含两层意思:一是
13、无限小数;二是不循环.二者缺一不行.归纳起来有四类: (1)开方开不尽的数,如等; (2)有特定意义的数,如圆周率,或化简后含有的数,如+8等; (3)有特定结构的数,如0.1010010001.等; (4)某些三角函数,如sin60o等。 留意:推断一个实数的属性(如有理数、无理数),应遵循:一化简,二辨析,三推断.要留意:神似或形似都不能作为推断的标准. 3、非负数:正实数与零的统称。(表为:x0) 常见的非负数有: 性质:若干个非负数的和为0,则每个非负担数均为0。 4、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要留意上述规定的三要素缺一不行)。 解题时要真正驾驭数形结
14、合的思想,理解实数与数轴的点是一一对应的,并能敏捷运用。 画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴(三要素)。 任何一个有理数都可以用数轴上的一个点来表示。 假如两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。 作用:A.直观地比较实数的大小;B.明确体现肯定值意义;C.建立点与实数的一一对应关系。 5、相反数 实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,假如a与b互为相反数,则有a+b=0,a=
15、-b,反之亦成立。 即:(1)实数的相反数是。 初中数学必考的21个学问点 1.数轴 (1)数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴. 数轴的三要素:原点,单位长度,正方向。 (2)数轴上的点:全部的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数.(一般取右方向为正方向,数轴上的点对应随意实数,包括无理数.) (3)用数轴比较大小:一般来说,当数轴方向朝右时,右边的数总比左边的数大。 重点学问: 初中数学第一课,相识正数与负数!新初一的来 2.相反数 (1)相反数的概念:只有符号不同的两个数叫做互为相反数. (2)相反数的意义:驾驭相反数是成对出现的,不能单独存在,从数
16、轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等。 (3)多重符号的化简:与“+”个数无关,有奇数个“?”号结果为负,有偶数个“?”号,结果为正。 (4)规律方法总结:求一个数的相反数的方法就是在这个数的前边添加“?”,如a的相反数是?a,m+n的相反数是?(m+n),这时m+n是一个整体,在整体前面添负号时,要用小括号。 3.肯定值 1.概念:数轴上某个数与原点的距离叫做这个数的肯定值。 互为相反数的两个数肯定值相等; 肯定值等于一个正数的数有两个,肯定值等于0的数有一个,没有肯定值等于负数的数. 有理数的肯定值都是非负数. 2.假如用字母a表示有理数,则数a 肯定值要
17、由字母a本身的取值来确定: 当a是正有理数时,a的肯定值是它本身a; 当a是负有理数时,a的肯定值是它的相反数?a; 当a是零时,a的肯定值是零. 即|a|=a(a0)0(a=0)?a(a0) 重点学问: 初中数学其次课,有理数的相关学问!新初一的来 4.有理数大小比较 1.有理数的大小比较 比较有理数的大小可以利用数轴,他们从左到有的依次,即从大到小的依次(在数轴上表示的两个有理数,右边的数总比左边的数大);也可以利用数的性质比较异号两数及0的大小,利用肯定值比较两个负数的大小。 2.有理数大小比较的法则: 正数都大于0; 负数都小于0; 正数大于一切负数; 两个负数,肯定值大的其值反而小。
18、 规律方法?有理数大小比较的三种方法: (1)法则比较:正数都大于0,负数都小于0,正数大于一切负数.两个负数比较大小,肯定值大的反而小. (2)数轴比较:在数轴上右边的点表示的数大于左边的点表示的数. (3)作差比较: 若a?b0,则ab; 若a?b0,则a 若a?b=0,则a=b. 5.有理数的减法 有理数减法法则 减去一个数,等于加上这个数的相反数。 即:a?b=a+(?b) 方法指引: 在进行减法运算时,首先弄清减数的符号; 将有理数转化为加法时,要同时变更两个符号:一是运算符号(减号变加号); 二是减数的性质符号(减数变相反数); 留意:在有理数减法运算时,被减数与减数的位置不能随意
19、交换;因为减法没有交换律。 减法法则不能与加法法则类比,0加任何数都不变,0减任何数应依法则进行计算。 6.有理数的乘法 (1)有理数乘法法则:两数相乘,同号得正,异号得负,并把肯定值相乘。 (2)任何数同零相乘,都得0。 (3)多个有理数相乘的法则: 几个不等于0的数相乘,积的符号由负因数的个数确定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正. 几个数相乘,有一个因数为0,积就为0。 (4)方法指引 运用乘法法则,先确定符号,再把肯定值相乘. 多个因数相乘,看0因数和积的符号当先,这样做使运算既精确又简洁. 7.有理数的混合运算 1.有理数混合运算依次:先算乘方,再算乘除,最终算
20、加减;同级运算,应按从左到右的依次进行计算;假如有括号,要先做括号内的运算。 2.进行有理数的混合运算时,留意各个运算律的运用,使运算过程得到简化。 有理数混合运算的四种运算技巧: (1)转化法:一是将除法转化为乘法,二是将乘方转化为乘法,三是在乘除混合运算中,通常将小数转化为分数进行约分计算. (2)凑整法:在加减混合运算中,通常将和为零的两个数,分母相同的两个数,和为整数的两个数,乘积为整数的两个数分别结合为一组求解. (3)分拆法:先将带分数分拆成一个整数与一个真分数的和的形式,然后进行计算. (4)巧用运算律:在计算中奇妙运用加法运算律或乘法运算律往往使计算更简便. 8.科学记数法表示
21、较大的数 1.科学记数法:把一个大于10的数记成a10n的形式,其中a是整数数位只有一位的数,n是正整数,这种记数法叫做科学记数法。(科学记数法形式:a10n,其中1a10,n为正整数) 2.规律方法总结 科学记数法中a的要求和10的指数n的表示规律为关键,由于10的指数比原来的整数位数少1;按此规律,先数一下原数的整数位数,即可求出10的指数n。 记数法要求是大于10的数可用科学记数法表示,实质上肯定值大于10的负数同样可用此法表示,只是前面多一个负号. 重点学问: 初中数学第八课:科学计数法,新初一的来 9.代数式求值 (1)代数式的值:用数值代替代数式里的字母,计算后所得的结果叫做代数式
22、的值。 (2)代数式的求值:求代数式的值可以干脆代入、计算.假如给出的代数式可以化简,要先化简再求值。 题型简洁总结以下三种: 已知条件不化简,所给代数式化简; 已知条件化简,所给代数式不化简; 已知条件和所给代数式都要化简. 10.规律型:图形的改变类 首先应找出图形哪些部分发生了改变,是根据什么规律改变的,通过分析找到各部分的改变规律后干脆利用规律求解。探寻规律要仔细视察、细致思索,善用联想来解决这类问题。 11.等式的性质 1.等式的性质 性质1 等式两边加同一个数(或式子)结果仍得等式; 性质2 等式两边乘同一个数或除以一个不为零的数,结果仍得等式。 2.利用等式的性质解方程 利用等式
23、的性质对方程进行变形,使方程的形式向x=a的形式转化. 应用时要留意把握两关: 怎样变形; 依据哪一条,变形时只有做到步步有据,才能保证是正确的. 新初一其次章学问点总结:整式的加减,为孩子保藏! 12.一元一次方程的解 定义:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解。 把方程的解代入原方程,等式左右两边相等。 13.解一元一次方程 1.解一元一次方程的一般步骤 去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,敏捷应用,各种步骤都是为使方程渐渐向x=a形式转化。 2.解一元一次方程时先视察方程的形式和特点,若有分母一般先去分母;若
24、既有分母又有括号,且括号外的项在乘括号内各项后能消去分母,就先去括号。 3.在解类似于“ax+bx=c”的方程时,将方程左边,按合并同类项的方法并为一项即(a+b)x=c。 使方程渐渐转化为ax=b的最简形式体现化归思想。 将ax=b系数化为1时,要精确计算,一弄清求x时,方程两边除以的是a还是b,尤其a为分数时;二要精确推断符号,a、b同号x为正,a、b异号x为负。 14.一元一次方程的应用 1.一元一次方程解应用题的类型 (1)探究规律型问题; (2)数字问题; (3)销售问题(利润=售价?进价,利润率=利润进价100%); (4)工程问题(工作量=人均效率人数时间;假如一件工作分几个阶段
25、完成,那么各阶段的工作量的和=工作总量); (5)行程问题(路程=速度时间); (6)等值变换问题; (7)和,差,倍,分问题; (8)安排问题; (9)竞赛积分问题; (10)水流航行问题(顺水速度=静水速度+水流速度;逆水速度=静水速度?水流速度). 2.利用方程解决实际问题的基本思路 首先审题找出题中的未知量和全部的已知量,干脆设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答。 列一元一次方程解应用题的五个步骤 (1)审:细致审题,确定已知量和未知量,找出它们之间的等量关系. (2)设:设未知数(x),依据实际
26、状况,可设干脆未知数(问什么设什么),也可设间接未知数. (3)列:依据等量关系列出方程. (4)解:解方程,求得未知数的值. (5)答:检验未知数的值是否正确,是否符合题意,完整地写出答句. 15.正方体相对两个面上的文字 (1)对于此类问题一般方法是用纸按图的样子折叠后可以解决,或是在对绽开图理解的基础上干脆想象. (2)从实物动身,结合详细的问题,辨析几何体的绽开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键. (3)正方体的绽开图有11种状况,分析平面绽开图的各种状况后再仔细确定哪两个面的对面. 16.直线、射线、线段 (1)直线、射线、线段的表示方法 直线:
27、用一个小写字母表示,如:直线l,或用两个大写字母(直线上的)表示,如直线AB. 射线:是直线的一部分,用一个小写字母表示,如:射线l;用两个大写字母表示,端点在前,如:射线OA.留意:用两个字母表示时,端点的字母放在前边. 线段:线段是直线的一部分,用一个小写字母表示,如线段a;用两个表示端点的字母表示,如:线段AB(或线段BA)。 (2)点与直线的位置关系: 点经过直线,说明点在直线上; 点不经过直线,说明点在直线外。 17.两点间的距离 (1)两点间的距离:连接两点间的线段的长度叫两点间的距离。 (2)平面上随意两点间都有肯定距离,它指的是连接这两点的线段的长度,学习此概念时,留意强调最终
28、的两个字“长度”,也就是说,它是一个量,有大小,区分于线段,线段是图形.线段的长度才是两点的距离.可以说画线段,但不能说画距离。 18.角的概念 (1)角的定义:有公共端点是两条射线组成的图形叫做角,其中这个公共端点是角的顶点,这两条射线是角的两条边。 (2)角的表示方法:角可以用一个大写字母表示,也可以用三个大写字母表示.其中顶点字母要写在中间,唯有在顶点处只有一个角的状况,才可用顶点处的一个字母来记这个角,否则分不清这个字母原委表示哪个角.角还可以用一个希腊字母(如,、)表示,或用阿拉伯数字(1,2)表示。 (3)平角、周角:角也可以看作是由一条射线绕它的端点旋转而形成的图形,当始边与终边
29、成一条直线时形成平角,当始 边与终边旋转重合时,形成周角。 (4)角的度量:度、分、秒是常用的角的度量单位.1度=60分,即1=60,1分=60秒,即1=60。 19.角平分线的定义 从一个角的顶点动身,把这个角分成相等的两个角的射线叫做这个角的平分线。 AOB是AOC和BOC的和,记作:AOB=AOC+BOC.AOC是AOB和BOC的差,记作:AOC=AOB?BOC。 若射线OC是AOB的三等分线,则AOB=3BOC或BOC=13AOB。 20.度分秒的运算 (1)度、分、秒的加减运算。 在进行度分秒的加减时,要将度与度,分与分,秒与秒相加减,分秒相加,逢60要进位,相减时,要借1化60。
30、(2)度、分、秒的乘除运算 乘法:度、分、秒分别相乘,结果逢60要进位。 除法:度、分、秒分别去除,把每一次的余数化作下一级单位进一步去除。 21.由三视图推断几何体 (1)由三视图想象几何体的形态,首先,应分别依据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形态,然后综合起来考虑整体形态。 (2)由物体的三视图想象几何体的形态是有肯定难度的,可以从以下途径进行分析: 依据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形态,以及几何体的长、宽、高; 从实线和虚线想象几何体看得见部分和看不见部分的轮廓线; 熟记一些简洁的几何体的三视图对困难几何体的想象会有帮助; 利用由三视图画
31、几何体与有几何体画三视图的互逆过程,反复练习,不断总结方法。 初中数学中位线学问点总结 学问要点:梯形的中位线平行于两底,并且等于两底和的一半。 1。中位线概念 (1)三角形中位线定义:连接三角形两边中点的线段叫做三角形的中位线。 (2)梯形中位线定义:连结梯形两腰中点的线段叫做梯形的中位线。 留意: (1)要把三角形的中位线与三角形的中线区分开。三角形中线是连结一顶点和它对边的中点,而三角形中位线是连结三角形两边中点的线段。 (2)梯形的中位线是连结两腰中点的线段而不是连结两底中点的线段。 (3)两个中位线定义间的联系:可以把三角形看成是上底为零时的梯形,这时梯形的中位线就变成三角形的中位线
32、。 2。中位线定理 (1)三角形中位线定理:三角形的中位线平行于第三边并且等于它的一半。 三角形两边中点的连线(中位线)平行于第BC边,且等于第三边的一半。 学问要领总结:三角形的中位线所构成的小三角形(中点三角形)面积是原三角形面积的四分之一。 初中数学学问点总结:平面直角坐标系 下面是对平面直角坐标系的内容学习,希望同学们很好的驾驭下面的内容。 平面直角坐标系 平面直角坐标系:在平面内画两条相互垂直、原点重合的数轴,组成平面直角坐标系。 水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。 平面直角坐标系的要素:在同一平面两条数轴相互垂直原点重合 三个
33、规定: 正方向的规定横轴取向右为正方向,纵轴取向上为正方向 单位长度的规定;一般状况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必需相同。 象限的规定:右上为第一象限、左上为其次象限、左下为第三象限、右下为第四象限。 信任上面对平面直角坐标系学问的讲解学习,同学们已经能很好的驾驭了吧,希望同学们都能考试胜利。 初中数学学问点:平面直角坐标系的构成 对于平面直角坐标系的构成内容,下面我们一起来学习哦。 平面直角坐标系的构成 在同一个平面上相互垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。 通过上面对平面直角坐标系的构成学问的'讲解学习,希望同学们对上面的内容都能很好的驾驭,同学们仔细学习吧。 初中数学学问点大全第23页 共23页第 23 页 共 23 页第 23 页 共 23 页第 23 页 共 23 页第 23 页 共 23 页第 23 页 共 23 页第 23 页 共 23 页第 23 页 共 23 页第 23 页 共 23 页第 23 页 共 23 页第 23 页 共 23 页
限制150内