动力学基本方程.ppt
《动力学基本方程.ppt》由会员分享,可在线阅读,更多相关《动力学基本方程.ppt(24页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、动力学基本方程 Four short words sum up what has lifted most successful Four short words sum up what has lifted most successful individuals above the crowd: a little bit more. individuals above the crowd: a little bit more. -author -author -date-dateFv1v2Av1Bv2牛顿出生于林肯郡伍尔索朴城的一个中等农户家中。在他出生之前父亲即去世,他不到三岁时母亲改嫁了,
2、他不得不靠他的外祖母养大。 1661年牛顿进入了剑桥大学的三一学院,1665年获文学学士学位。在大学期间他全面掌握了当时的数学和光学。1665-1666的两年期间,剑桥流行黑热病,学校暂时停办,他回到老家。这段时间中他发现了二项式定律,开始了光学中的颜色实验,即白光由7种色光构成的实验。而且由于一次躺在树下看到苹果落地开始思索地心引力问题。在30岁时,牛顿被选为皇家学会的会员,这是当时英国最高科学荣誉。 牛顿在光学上的主要贡献是发现了太阳光是由7种不同颜色的光合成的,他提出了光的微粒说。 牛顿在数学上的主要贡献是与莱布尼兹各自独立地发明了微积分,给出了二项式定理。 牛顿在力学上最重要的贡献,也
3、是牛顿对整个自然科学的最重要贡献是他的巨著自然哲学之数学原理。这本书出版于1687年,书中提出了万有引力理论并且系统总结了前人对动力学的研究成果,后人将这本书所总结的经典力学系统称为牛顿力学。第第 15 15 章章 动力学基本方程动力学基本方程15.1 15.1 动力学的基本定律动力学的基本定律第一定律(惯性定律)不受力作用的质点,将保持静止或作匀速直线运动。质点保持其原有运动状态不变的属性称为惯性。15.1 15.1 动力学的基本定律动力学的基本定律第二定律(力与加速度关系定律) m aF在经典力学中质点的质量是守恒的在经典力学中质点的质量是守恒的质点的质量越大,其运动状态越不容易改变,也就
4、是质点的惯性越大。因此,质量是质点惯性的度量。上式是推导其它动力学方程的出发点,称为动力学基本方程。质点的质量与加速度的乘积,等于作用质点的力的大小,加速度的方向与力的方向相同。d()dmtvF15.1 15.1 动力学的基本定律动力学的基本定律mPgm Pg国际计量标准g9.80665 m/s2,一般取g9.8 m/s2在国际单位制(SI)中,长度、时间、质量为基本量,它们的单位以米(m)、秒(s)和千克(kg)为基本单位。其它量均为导出量,它们的单位则是导出单位。在地球表面,任何物体都受到重力 P 的作用。在重力作用下得到的加速度称为重力加速度,用 g 表示。由第二定律有或229.7804
5、9(1 0.0052884sin0.0000059sin 2g为纬度15.1 15.1 动力学的基本定律动力学的基本定律 必须指出的是:质点受力与坐标无关,但质点的加速度与坐标的选择有关,因此牛顿第一、第二定律不是任何坐标都适用的。凡牛顿定律适用的坐标系称为惯性坐标系。反之为非惯性坐标系。第三定律(作用与反作用定律)两个物体间相互作用的作用力和反作用力总是大小相等、方向相反,沿着同一作用线同时分别作用在这两个物体上。 以牛顿定律为基础所形成的力学理论称为古典力学。221ddniimmtraF2. 质点运动微分方程在直角坐标轴上投影222222111ddd,dddnnnxiyiziiiixyzm
6、FmFmFttt3. 质点运动微分方程在自然轴上投影2tnb111d, 0dnnniiiiiivvmFmFFt1. 矢量形式的质点运动微分方程15.2 15.2 质点的运动微分方程质点的运动微分方程15.2 15.2 质点的运动微分方程质点的运动微分方程第一类基本问题:已知质点的运动,求作用在质点上的力。这类问题其实质可归结为数学上的求导问题。 第二类基本问题:已知作用在质点上的力,求质点的运动。这类问题其实质可归结为数学上的解微分方程或求积分问题。例10.1例1 如图,设质量为m的质点M在平面oxy内运动,已知其运动方程为xa cos wt,ya sin wt,求作用在质点上的力F。ijvr
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 动力学 基本 方程
限制150内