2022年九年级中考数学中点问题教案.docx
《2022年九年级中考数学中点问题教案.docx》由会员分享,可在线阅读,更多相关《2022年九年级中考数学中点问题教案.docx(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2022年九年级中考数学中点问题教案 九年级数学老师应当提高数学教学的有效性,须要在教学方式、方法上进行不断的创新与改善。九年级数学教案对数学老师的工作具有主动的影响,能够帮助他们提升教学质量。你是否在找正打算撰写“九年级中考数学中点问题教案”,下面我收集了相关的素材,供大家写文参考! #817510九年级中考数学中点问题教案1 圆 经验圆的概念的形成过程,理解圆、弧、弦等与圆有关的概念,了解等圆、等弧的概念. 重点 经验形成圆的概念的过程,理解圆及其有关概念. 难点 理解圆的概念的形成过程和圆的集合性定义. 活动1创设情境,引出课题 1.多媒体展示生活中常见的给我们以圆的形象的物体. 2.提
2、出问题:我们看到的物体给我们什么样的形象? 活动2动手操作,形成概念 在没有圆规的状况下,让学生用铅笔和细线画一个圆. 老师巡察,展示学生的作品,提出问题:我们画的圆的位置和大小一样吗?画的圆的位置和大小分别由什么决定? 老师强调指出:位置由固定的一个端点确定,大小由固定端点到铅笔尖的细线的长度确定. 1.从以上圆的形成过程,总结概念:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点所形成的图形叫做圆.固定的端点O叫做圆心,线段OA叫做半径.以点O为圆心的圆,记作“O”,读作“圆O”. 2.小组探讨下面的两个问题: 问题1:圆上各点到定点(圆心O)的距离有什么规律? 问题2:到定
3、点的距离等于定长的点又有什么特点? 3.小组代表发言,老师点评总结,形成新概念. (1)圆上各点到定点(圆心O)的距离都等于定长(半径r); (2)到定点的距离等于定长的点都在同一个圆上. 因此,我们可以得到圆的新概念:圆心为O,半径为r的圆可以看成是全部到定点O的距离等于定长r的点的集合.(一个图形看成是满意条件的点的集合,必需符合两点:在图形上的每个点,都满意这个条件;满意这个条件的每个点,都在这个图形上.) 活动3学以致用,巩固概念 1.教材第81页练习第1题. 2.教材第80页例1. 多媒体展示例1,引导学生分析要证明四个点在同一圆上,实际是要证明到定点的距离等于定长,即四个点到O的距
4、离相等. 活动4自学教材,辨析概念 1.自学教材第80页例1后面的内容,推断下列问题正确与否: (1)直径是弦,弦是直径;半圆是弧,弧是半圆. (2)圆上随意两点间的线段叫做弧. (3)在同圆中,半径相等,直径是半径的2倍. (4)长度相等的两条弧是等弧.(老师强调:长度相等的弧不肯定是等弧,等弧必需是在同圆或等圆中的弧.) (5)大于半圆的弧是劣弧,小于半圆的弧是优弧. 2.指出图中全部的弦和弧. 活动5达标检测,反馈新知 教材第81页练习第2,3题. 活动6课堂小结,作业布置 课堂小结 1.圆、弦、弧、等圆、等弧的概念.要特殊留意“直径和弦”“弧和半圆”以及“同圆、等圆”这些概念的区别和联
5、系.等圆和等弧的概念是建立在“能够完全重合”这一前提条件下的,它将作为今后推断两圆或两弧相等的依据. 2.证明几点在同一圆上的方法. 3.集合思想. 作业布置 1.以定点O为圆心,作半径等于2厘米的圆. 2.如图,在RtABC和RtABD中,C=90,D=90,点O是AB的中点. 求证:A,B,C,D四个点在以点O为圆心的同一圆上. 答案:1.略;2.证明OA=OB=OC=OD即可. #817511九年级中考数学中点问题教案2 二次根式的乘除法 教学目标 1、使学生驾驭二次根式的乘法运算法则,会用它进行简洁的二次根式的乘法运算。 2、使学生驾驭积的算术平方根的性质、会依据这一性质娴熟地化简二次
6、根式. 3、培育学生合情推理实力。 教学过程 一、复习提问 1、什么叫做二次根式?下列式子哪些是二次根式,哪些不是二次根式? 2、二次根式有哪些性质?计算下列各题: ()2 二、提出问题,导入新知 1、试一试 计算: (1) _=( )=( ) =( )=( ) (2) _=( )=( ) =( )=( ) 提问:视察以上计算结果,你能发觉什么? 2、思索 _与是否相等? 提问:(1)你将用什么方法计算? (2)通过计算,你发觉了什么?是否与前面试一试的结果一样? 3、概括 让学生视察以上计算结果、归纳得出结论:_=(a0,b0) 留意,a,b必需都是非负数,上式才能成立。 三、举例应用 例1
7、、计算。 _ 说明:二次根式运算的结果,应当尽量化简、如(2)结果不要写成,而应化简成4。 等式_=(a0,b0),也可以写成=_(a0,b0) 利用它可以进行二次根式的化简,例如:=_=a2 例2、化简 说明:(1)假如一个二次根式的被开方数中有的因式(或因数)能开得尽方,可以利用积的算术平方根的性质,将这些因式(或因数)开出来,从而将二次根式化简;(2)在化简时,一般先将被开方数进行因式分解或因数分解,然后就将能开得尽方的因式(偶次方因式)或因数用它们的算术平方根代替,移到根号外,也就是开出方来。 四、课堂练习 1、计算下列各式,将所得结果化简: _ _ 2、P12页练习1(1)、(2)、
8、2 五、想一想 1、_与是否相等?a、b、c有什么限制?请举一个例子加以说明。 2、等于_吗? 3、化简: 六、小结 这节课我们学习了以下学问: 1、二次根式的乘法运算法则,即_= (a0,b0) 2、积的算术平方根,等于积中各因式的算术平方根的积,即=_ (a0,b0) 要特殊留意,以上(1)、(2)中,a、b必需都是非负数,假如a、b中出现了负数,等式就不成立、想一想,=_成立吗?为什么? 3、应用(1)、(2)进行计算和化简,在计算和化简中,复习了性质=a(a 0),加深了对非负数a的算术平方根的性质的相识 七、作业 习题22.2第2、(1),(2)题,第3、(1)、(2)题、第4题 #
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 九年级 中考 数学 中点 问题 教案
限制150内