2022年人教版中考数学复习资料提纲.docx
《2022年人教版中考数学复习资料提纲.docx》由会员分享,可在线阅读,更多相关《2022年人教版中考数学复习资料提纲.docx(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2022年人教版中考数学复习资料提纲 即将中考的学生,切实可行的复习安排能让复习有条不紊地进行下去,避开复习时的随意性和盲目性。下面是学习啦我共享给大家的中考数学复习资料提纲,希望大家喜爱! 中考数学复习资料提纲 第三章 统计初步 内容提要 一、 重要概念 1.总体:考察对象的全体。 2.个体:总体中每一个考察对象。 3.样本:从总体中抽出的一部分个体。 4.样本容量:样本中个体的数目。 5.众数:一组数据中,出现次数最多的数据。 6.中位数:将一组数据按大小依次排列,处在最中间位置的一个数(或最中间位置的两个数据的平均数) 二、 计算方法 1.样本平均数: ;若 , , ,则 (a常数, ,
2、 , 接近较整的常数a);加权平均数: ;平均数是刻划数据的集中趋势(集中位置)的特征数。通常用样本平均数去估计总体平均数,样本容量越大,估计越精确。 2.样本方差: ;若 , , ,则 (a接近 、 、 的平均数的较整的常数);若 、 、 较小较整,则 ;样本方差是刻划数据的离散程度(波动大小)的特征数,当样本容量较大时,样本方差特别接近总体方差,通常用样本方差去估计总体方差。 3.样本标准差: 三、 应用举例(略) 第四章 直线形 相交线与平行线、三角形、四边形的有关概念、判定、性质。 内容提要 一、 直线、相交线、平行线 1.线段、射线、直线三者的区分与联系 从图形、表示法、界限、端点个
3、数、基本性质等方面加以分析。 2.线段的中点及表示 3.直线、线段的基本性质(用线段的基本性质论证三角形两边之和大于第三边) 4.两点间的距离(三个距离:点-点;点-线;线-线) 5.角(平角、周角、直角、锐角、钝角) 6.互为余角、互为补角及表示方法 7.角的平分线及其表示 8.垂线及基本性质(利用它证明直角三角形中斜边大于直角边) 9.对顶角及性质 10.平行线及判定与性质(互逆)(二者的区分与联系) 11.常用定理:同平行于一条直线的两条直线平行(传递性);同垂直于一条直线的两条直线平行。 12.定义、命题、命题的组成 13.公理、定理 14.逆命题 二、 三角形 分类:按边分; 按角分
4、 1.定义(包括内、外角) 2.三角形的边角关系:角与角:内角和及推论;外角和;n边形内角和;n边形外角和。边与边:三角形两边之和大于第三边,两边之差小于第三边。角与边:在同一三角形中, 3.三角形的主要线段 探讨:定义××线的交点三角形的×心性质 高线中线角平分线中垂线中位线 一般三角形特别三角形:直角三角形、等腰三角形、等边三角形 4.特别三角形(直角三角形、等腰三角形、等边三角形、等腰直角三角形)的判定与性质 5.全等三角形 一般三角形全等的判定(SAS、ASA、AAS、SSS) 特别三角形全等的判定:一般方法专用方法 6.三角形的面积 一般计算公式性
5、质:等底等高的三角形面积相等。 7.重要协助线 中点配中点构成中位线;加倍中线;添加协助平行线 8.证明方法 干脆证法:综合法、分析法 间接证法反证法:反设归谬结论 证线段相等、角相等常通过证三角形全等 证线段倍分关系:加倍法、折半法 证线段和差关系:延结法、截余法 证面积关系:将面积表示出来 三、 四边形 分类表: 1.一般性质(角) 内角和:360° 顺次连结各边中点得平行四边形。 推论1:顺次连结对角线相等的四边形各边中点得菱形。 推论2:顺次连结对角线相互垂直的四边形各边中点得矩形。 外角和:360° 2.特别四边形 探讨它们的一般方法: 平行四边形、矩形、菱形、正方形
6、;梯形、等腰梯形的定义、性质和判定 判定步骤:四边形→平行四边形→矩形→正方形 →菱形↑ 对角线的纽带作用: 3.对称图形 轴对称(定义及性质);中心对称(定义及性质) 4.有关定理:平行线等分线段定理及其推论1、2 三角形、梯形的中位线定理 平行线间的距离到处相等。(如,找下图中面积相等的三角形) 5.重要协助线:常连结四边形的对角线;梯形中常平移一腰、平移对角线、作高、连结顶点和对腰中点并延长与底边相交转化为三角形。 6.作图:随意等分线段。 四、 应用举例(略) 中考数学复习策略 1、在复习时我们首先要仔细探讨新课程标准,摸清初中数学内容
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 年人教版 中考 数学 复习资料 提纲
限制150内