数学规划模型.ppt
《数学规划模型.ppt》由会员分享,可在线阅读,更多相关《数学规划模型.ppt(54页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、数学规划模型,数学规划模型,实际问题中的优化模型,x决策变量,f(x)目标函数,gi(x)0约束条件,多元函数条件极值,决策变量个数n和约束条件个数m较大,最优解在可行域的边界上取得,数学规划,线性规划非线性规划整数规划,重点在模型的建立和结果的分析,企业生产计划,1奶制品的生产与销售,空间层次,工厂级:根据外部需求和内部设备、人力、原料等条件,以最大利润为目标制订产品生产计划;,车间级:根据生产计划、工艺流程、资源约束及费用参数等,以最小成本为目标制订生产批量计划。,时间层次,若短时间内外部需求和内部资源等不随时间变化,可制订单阶段生产计划,否则应制订多阶段生产计划。,例1加工奶制品的生产计
2、划,50桶牛奶,时间480小时,至多加工100公斤A1,制订生产计划,使每天获利最大,35元可买到1桶牛奶,买吗?若买,每天最多买多少?,可聘用临时工人,付出的工资最多是每小时几元?,A1的获利增加到30元/公斤,应否改变生产计划?,每天:,x1桶牛奶生产A1,x2桶牛奶生产A2,获利243x1,获利164x2,原料供应,劳动时间,加工能力,决策变量,目标函数,每天获利,约束条件,非负约束,线性规划模型(LP),时间480小时,至多加工100公斤A1,模型分析与假设,比例性,可加性,连续性,xi对目标函数的“贡献”与xi取值成正比,xi对约束条件的“贡献”与xi取值成正比,xi对目标函数的“贡
3、献”与xj取值无关,xi对约束条件的“贡献”与xj取值无关,xi取值连续,A1,A2每公斤的获利是与各自产量无关的常数,每桶牛奶加工出A1,A2的数量和时间是与各自产量无关的常数,A1,A2每公斤的获利是与相互产量无关的常数,每桶牛奶加工出A1,A2的数量和时间是与相互产量无关的常数,加工A1,A2的牛奶桶数是实数,线性规划模型,模型求解,图解法,约束条件,目标函数,z=c(常数)等值线,在B(20,30)点得到最优解,目标函数和约束条件是线性函数,可行域为直线段围成的凸多边形,目标函数的等值线为直线,最优解一定在凸多边形的某个顶点取得。,模型求解,软件实现,LINDO6.1,max72x1+
4、64x2st2)x1+x2503)12x1+8x24804)3x1”(或“=”(或“=”)功能相同变量与系数间可有空格(甚至回车),但无运算符变量名以字母开头,不能超过8个字符变量名不区分大小写(包括LINDO中的关键字)目标函数所在行是第一行,第二行起为约束条件行号(行名)自动产生或人为定义。行名以“)”结束行中注有“!”符号的后面部分为注释。如:!ItsComment.在模型的任何地方都可以用“TITLE”对模型命名(最多72个字符),如:TITLEThisModelisonlyanExample,变量不能出现在一个约束条件的右端表达式中不接受括号“()”和逗号“,”等任何符号,例:400
5、(X1+X2)需写为400X1+400X2表达式应化简,如2X1+3X2-4X1应写成-2X1+3X2缺省假定所有变量非负;可在模型的“END”语句后用“FREEname”将变量name的非负假定取消可在“END”后用“SUB”或“SLB”设定变量上下界例如:“subx110”的作用等价于“x1=10”但用“SUB”和“SLB”表示的上下界约束不计入模型的约束,也不能给出其松紧判断和敏感性分析。14.“END”后对0-1变量说明:INTn或INTname15.“END”后对整数变量说明:GINn或GINname,使用LINDO的一些注意事项,结果解释,OBJECTIVEFUNCTIONVALU
6、E1)3360.000VARIABLEVALUEREDUCEDCOSTX120.0000000.000000X230.0000000.000000ROWSLACKORSURPLUSDUALPRICES2)0.00000048.0000003)0.0000002.0000004)40.0000000.000000NO.ITERATIONS=2,原料无剩余,时间无剩余,加工能力剩余40,max72x1+64x2st2)x1+x2503)12x1+8x24804)3x1100end,三种资源,“资源”剩余为零的约束为紧约束(有效约束),结果解释,OBJECTIVEFUNCTIONVALUE1)336
7、0.000VARIABLEVALUEREDUCEDCOSTX120.0000000.000000X230.0000000.000000ROWSLACKORSURPLUSDUALPRICES2)0.00000048.0000003)0.0000002.0000004)40.0000000.000000NO.ITERATIONS=2,最优解下“资源”增加1单位时“效益”的增量,原料增加1单位,利润增长48,时间增加1单位,利润增长2,加工能力增长不影响利润,影子价格,35元可买到1桶牛奶,要买吗?,3548,应该买!,聘用临时工人付出的工资最多每小时几元?,2元!,RANGESINWHICHTHE
8、BASISISUNCHANGED:OBJCOEFFICIENTRANGESVARIABLECURRENTALLOWABLEALLOWABLECOEFINCREASEDECREASEX172.00000024.0000008.000000X264.0000008.00000016.000000RIGHTHANDSIDERANGESROWCURRENTALLOWABLEALLOWABLERHSINCREASEDECREASE250.00000010.0000006.6666673480.00000053.33333280.0000004100.000000INFINITY40.000000,最优解
9、不变时目标函数系数允许变化范围,DORANGE(SENSITIVITY)ANALYSIS?,Yes,x1系数范围(64,96),x2系数范围(48,72),A1获利增加到30元/千克,应否改变生产计划,x1系数由243=72增加为303=90,在允许范围内,不变!,(约束条件不变),结果解释,RANGESINWHICHTHEBASISISUNCHANGED:OBJCOEFFICIENTRANGESVARIABLECURRENTALLOWABLEALLOWABLECOEFINCREASEDECREASEX172.00000024.0000008.000000X264.0000008.000000
10、16.000000RIGHTHANDSIDERANGESROWCURRENTALLOWABLEALLOWABLERHSINCREASEDECREASE250.00000010.0000006.6666673480.00000053.33333280.0000004100.000000INFINITY40.000000,影子价格有意义时约束右端的允许变化范围,原料最多增加10,时间最多增加53,35元可买到1桶牛奶,每天最多买多少?,最多买10桶!,(目标函数不变),例2奶制品的生产销售计划,在例1基础上深加工,制订生产计划,使每天净利润最大,30元可增加1桶牛奶,3元可增加1小时时间,应否投资
11、?现投资150元,可赚回多少?,50桶牛奶,480小时,至多100公斤A1,B1,B2的获利经常有10%的波动,对计划有无影响?,出售x1千克A1,x2千克A2,,X3千克B1,x4千克B2,原料供应,劳动时间,加工能力,决策变量,目标函数,利润,约束条件,非负约束,x5千克A1加工B1,x6千克A2加工B2,附加约束,模型求解,软件实现,LINDO6.1,OBJECTIVEFUNCTIONVALUE1)3460.800VARIABLEVALUEREDUCEDCOSTX10.0000001.680000X2168.0000000.000000X319.2000010.000000X40.000
12、0000.000000X524.0000000.000000X60.0000001.520000ROWSLACKORSURPLUSDUALPRICES2)0.0000003.1600003)0.0000003.2600004)76.0000000.0000005)0.00000044.0000006)0.00000032.000000NO.ITERATIONS=2,OBJECTIVEFUNCTIONVALUE1)3460.800VARIABLEVALUEREDUCEDCOSTX10.0000001.680000X2168.0000000.000000X319.2000010.000000X40
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 规划 模型
限制150内