《最新北京邮电大学高等数学1-1精品课件.ppt》由会员分享,可在线阅读,更多相关《最新北京邮电大学高等数学1-1精品课件.ppt(37页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第一节 函数 一、基本概念二、函数概念三、函数的特性四、反函数五、小结5.5.绝对值绝对值: : 00aaaaa)0( a运算性质运算性质:;baab ;baba .bababa )0( aax;axa )0( aax;axax 或或绝对值不等式绝对值不等式:二、函数概念例例 圆内接正多边形的周长圆内接正多边形的周长nnrSn sin2, 5 , 4 , 3 n3S5S4S6S圆内接正圆内接正n 边形边形Orn )因变量因变量自变量自变量.)(,000处处的的函函数数值值为为函函数数在在点点称称时时当当xxfDx .),(称为函数的值域称为函数的值域函数值全体组成的数集函数值全体组成的数集Dx
2、xfyyW 变变量量y按按照照一一定定法法则则总总有有确确定定的的数数值值和和它它对对应应,则则称称y是是x的的函函数数,记记作作定定义义 设设x和和y是是两两个个变变量量, ,D是是一一个个给给定定的的数数集集,数集数集D叫做这个函数的叫做这个函数的定义域定义域)(xfy 如如果果对对于于每每个个数数Dx ,()0 x)(0 xf自变量自变量因变量因变量对应法则对应法则f函数的两要素函数的两要素: : 定义域定义域与与对应法则对应法则.xyDW约定约定: 定义域是自变量所能取的使算式有意义定义域是自变量所能取的使算式有意义的一切实数值的一切实数值.21xy 例例如如, 1 , 1 : D21
3、1xy 例例如如,)1 , 1(: D定义定义: :.)(),(),(的图形的图形函数函数称为称为点集点集xfyDxxfyyxC oxy),(yxxyWD 如果自变量在定如果自变量在定义域内任取一个数值义域内任取一个数值时,对应的函数值总时,对应的函数值总是只有一个,这种函是只有一个,这种函数叫做单值函数,否数叫做单值函数,否则叫与多值函数则叫与多值函数例例如如,222ayx (1) 符号函数符号函数 010001sgnxxxxy当当当当当当几个特殊的函数举例几个特殊的函数举例1-1xyoxxx sgn(2) 取整函数取整函数 y=xx表示不超过表示不超过 的最大整数的最大整数 1 2 3 4
4、 5 -2-4-4 -3 -2 -1 4 3 2 1 -1-3xyo阶梯曲线阶梯曲线x 是无理数时是无理数时当当是有理数时是有理数时当当xxxDy01)(有理数点有理数点无理数点无理数点1xyo(3) 狄利克雷函数狄利克雷函数(4) 取最值函数取最值函数)(),(maxxgxfy )(),(minxgxfy yxo)(xf)(xgyxo)(xf)(xg 0, 10, 12)(,2xxxxxf例例如如12 xy12 xy在自变量的不同变化范围中在自变量的不同变化范围中, 对应法则用不同的对应法则用不同的式子来表示的函数式子来表示的函数,称为称为分段函数分段函数.例例1 1脉冲发生器产生一个单三角
5、脉冲脉冲发生器产生一个单三角脉冲,其波形如图其波形如图所示所示,写出电压写出电压U与时间与时间 的函数关系式的函数关系式.)0( tt解解UtoE),2(E )0 ,( 2 ,2, 0时时当当 ttEU2 ;2tE 单三角脉冲信号的电压单三角脉冲信号的电压,2(时时当当 t),(200 tEU)(2 tEU即即,),(时时当当 t. 0 U其表达式为其表达式为是一个分段函数是一个分段函数,)(tUU ),(, 0,2(),(22, 0,2)(tttEttEtUUtoE),2(E )0 ,( 2 例例2 2.)3(,212101)(的的定定义义域域求求函函数数设设 xfxxxf解解 231213
6、01)3(xxxf 212101)(xxxf 122231xx1, 3 : fD故故三、函数的特性M-Myxoy=f(x)X有界有界无界无界M-MyxoX0 x,)(, 0,成立成立有有若若MxfXxMDX 1函数的有界性函数的有界性:.)(否否则则称称无无界界上上有有界界在在则则称称函函数数Xxf2函数的单调性函数的单调性:,)(DIDxf 区间区间的定义域为的定义域为设函数设函数,2121时时当当及及上上任任意意两两点点如如果果对对于于区区间间xxxxI ;)(上上是是单单调调增增加加的的在在区区间间则则称称函函数数Ixf),()()1(21xfxf 恒有恒有)(xfy )(1xf)(2x
7、fxyoI)(xfy )(1xf)(2xfxyoI;)(上是单调减少的上是单调减少的在区间在区间则称函数则称函数Ixf,)(DIDxf 区间区间的定义域为的定义域为设函数设函数,2121时时当当及及上上任任意意两两点点如如果果对对于于区区间间xxxxI ),()()2(21xfxf 恒恒有有3函数的奇偶性函数的奇偶性:偶函数偶函数有有对对于于关关于于原原点点对对称称设设,DxD )()(xfxf yx)( xf )(xfy ox-x)(xf;)(为为偶偶函函数数称称xf有有对于对于关于原点对称关于原点对称设设,DxD )()(xfxf ;)(为为奇奇函函数数称称xf奇函数奇函数)( xf yx
8、)(xfox-x)(xfy 4函数的周期性函数的周期性:(通常说周期函数的周期是指其最小正(通常说周期函数的周期是指其最小正周期周期).2l 2l23l 23l,)(Dxf的定义域为的定义域为设函数设函数如如果果存存在在一一个个不不为为零零的的)()(xflxf 且且为周为周则称则称)(xf.)( ,DlxDxl 使得对于任一使得对于任一数数.)(,的周期的周期称为称为期函数期函数xfl.恒成立恒成立四、反函数0 x0y0 x0yxyDW)(xfy 函函数数oxyDW)(yx 反反函函数数o)(xfy 直直接接函函数数xyo),(abQ),(baP)(xy 反函数反函数 直接函数与反函数的图形
9、关于直线直接函数与反函数的图形关于直线 对称对称.xy 例例3 3解解,01)( QxQxxD设设.)().21(),57(的的性性质质并并讨讨论论求求xDDDD , 1)57( D, 0)21( D, 1)( xDDoxy1单值函数单值函数, 有界函数有界函数,偶函数偶函数,周期函数周期函数(无最小正周期无最小正周期)不是单调函数不是单调函数,五、小结基本概念基本概念集合集合, 区间区间, 邻域邻域, 常量与变量常量与变量, 绝对值绝对值.函数的概念函数的概念函数的特性函数的特性有界性有界性, ,单调性单调性, ,奇偶性奇偶性, ,周期性周期性. .反函数反函数思考题思考题设设0 x,函函数
10、数值值21)1(xxxf ,求求函函数数)0()( xxfy的的解解析析表表达达式式.思考题解答思考题解答设设ux 1则则 2111uuuf ,112uu 故故)0(.11)(2 xxxxf一、一、 填空题填空题: :1 1、 若若2251tttf , ,则则_)( tf, , _)1(2 tf. .2 2、 若若 3,sin3, 1)(xxxt, , 则则)6( =_=_,)3( =_.=_. 3 3、不等式、不等式15 x的区间表示法是的区间表示法是_._. 4 4、设、设2xy , ,要使要使 ), 0( Ux 时,时,)2 , 0(Uy , , 须须 _._.练练 习习 题题二、证明二
11、、证明xylg 在在), 0(上的单调性上的单调性. .三、证明任一定义在区间三、证明任一定义在区间)0(),( aaa上的函数可表上的函数可表 示成一个奇函数与一个偶函数之和示成一个奇函数与一个偶函数之和. .四、设四、设)(xf是以是以 2 2 为周期的函数,为周期的函数,且且 10, 001,)(2xxxxf, ,试在试在),(上绘出上绘出)(xf的图形的图形. .五、证明:两个偶函数的乘积是偶函数,两个奇函数的五、证明:两个偶函数的乘积是偶函数,两个奇函数的 乘积是偶函数,偶函数与奇函数的乘积是奇函数乘积是偶函数,偶函数与奇函数的乘积是奇函数. .六、证明函数六、证明函数acxbaxy 的反函数是其本身的反函数是其本身. .七七、求求xxxxeeeexf )(的的反反函函数数,并并指指出出其其定定义义域域. .一、一、1 1、225tt , ,222)1(2)1(5 tt; 2 2、1,11,1; 3 3、(4,6)(4,6); 4. 4.2, 0( . .七、七、)1 , 1( ,11ln xxy. .练习题答案练习题答案
限制150内