2022年初一数学基础知识点.docx
《2022年初一数学基础知识点.docx》由会员分享,可在线阅读,更多相关《2022年初一数学基础知识点.docx(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2022年初一数学基础知识点 学习这件事不在乎有没有人教你,最重要的是在于你自己有没有觉悟和恒心。任何科目学习方法其实都是一样的,不断的记忆与练习,使学问刻在脑海里。下面是我给大家整理的一些初一数学的学问点,希望对大家有所帮助。 七年级数学学问点 【生活中的轴对称】 1、轴对称图形:假如一个图形沿一条直线折叠后,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。 2、轴对称:对于两个图形,假如沿一条直线对折后,它们能相互重合,那么称这两个图形成轴对称,这条直线就是对称轴。可以说成:这两个图形关于某条直线对称。 3、轴对称图形与轴对称的区分:轴对称图形是一个图形,轴对称
2、是两个图形的关系。 联系:它们都是图形沿某直线折叠可以相互重合。 2、成轴对称的两个图形肯定全等。 3、全等的两个图形不肯定成轴对称。 4、对称轴是直线。 5、角平分线的性质 1、角平分线所在的直线是该角的对称轴。 2、性质:角平分线上的点到这个角的两边的距离相等。 6、线段的垂直平分线 1、垂直于一条线段并且平分这条线段的直线叫做这条线段的垂直平分线,又叫线段的中垂线。 2、性质:线段垂直平分线上的点到这条线段两端点的距离相等。 7、轴对称图形有: 等腰三角形(1条或3条)、等腰梯形(1条)、长方形(2条)、菱形(2条)、正方形(4条)、圆(多数条)、线段(1条)、角(1条)、正五角星。 8
3、、等腰三角形性质: 两个底角相等。两个条边相等。“三线合一”。底边上的高、中线、顶角的平分线所在直线是它的对称轴。 9、“等角对等边”B=CAB=AC “等边对等角”AB=ACB=C 10、角平分线性质: 角平分线上的点到角两边的距离相等。 OA平分CADOEAC,OFADOE=OF 11、垂直平分线性质:垂直平分线上的点到线段两端点的距离相等。 OC垂直平分ABAC=BC 12、轴对称的性质 1、两个图形沿一条直线对折后,能够重合的点称为对应点(对称点),能够重合的线段称为对应线段,能够重合的角称为对应角。2、关于某条直线对称的两个图形是全等图形。 2、假如两个图形关于某条直线对称,那么对应
4、点所连的线段被对称轴垂直平分。 3、假如两个图形关于某条直线对称,那么对应线段、对应角都相等。 13、镜面对称 1.当物体正对镜面摆放时,镜面会变更它的左右方向; 2.当垂直于镜面摆放时,镜面会变更它的上下方向; 3.假如是轴对称图形,当对称轴与镜面平行时,其镜子中影像与原图一样; 学生通过探讨,可能会找出以下解决物体与像之间相互转化问题的方法: (1)利用镜子照(留意镜子的位置摆放);(2)利用轴对称性质; (3)可以把数字左右颠倒,或做简洁的轴对称图形; (4)可以看像的背面;(5)依据前面的结论在头脑中想象。 初一下册数学三角形学问点 一、目标与要求 1.相识三角形,了解三角形的意义,相
5、识三角形的边、内角、顶点,能用符号语言表示三角形。 2.经验度量三角形边长的实践活动中,理解三角形三边不等的关系。 3.懂得推断三条线段可否构成一个三角形的方法,并能运用它解决有关的问题。 4.三角形的内角和定理,能用平行线的性质推出这肯定理。 5.能应用三角形内角和定理解决一些简洁的实际问题。 二、重点 三角形内角和定理; 对三角形有关概念的了解,能用符号语言表示三条形。 三、难点 三角形内角和定理的推理的过程; 在详细的图形中不重复,且不遗漏地识别全部三角形; 用三角形三边不等关系判定三条线段可否组成三角形。 四、学问框架 五、学问点、概念总结 1.三角形:由不在同始终线上的三条线段首尾顺
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 年初 数学 基础 知识点
限制150内