2022年北师大版八年级数学上册教案.docx
《2022年北师大版八年级数学上册教案.docx》由会员分享,可在线阅读,更多相关《2022年北师大版八年级数学上册教案.docx(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2022年北师大版八年级数学上册教案 八年级数学老师要从内心深处去酷爱学生,主动主动地创建条件,让学生从中潜移默化地受到熏陶和感染。八年级数学老师的教学工作离不开八年级数学教案,八年级数学教案是他们进行教学活动的保障。你是否在找正打算撰写“北师大版八年级数学上册教案”,下面我收集了相关的素材,供大家写文参考! #447246北师大版八年级数学上册教案1 为了更好的引入“反比例函数”的概念,并能突出重点,我采纳了课本上的问题情境,同时调整了课本上供应的“思索”的问题的位置,将它放到函数概念引出之后,让学生体会在生活中有许多反比例关系。 情境设置: 汽车从南京开往上海,全程约300km,全程所用的
2、时间t(h)随v(km/h)的改变而改变。 (1)你能用含v的代数式来表示t吗? (2)时间t是速度v的函数吗? 设计意图:与前面复习内容相呼应,让同学们能在“做一做”和“议一仪”中感受两个量之间的函数关系,同时也能留意到与所学“一次函数”,尤其是“正比例函数”的不同。从而自然地引入“反比例函数”概念。 为帮助学生更深刻的相识和驾驭反比例函数概念,我引导学生将反比例函数的一般式进行变形,并支配了相应的例题。 一般式变形:(其中k均不为0) 通过对一般式的变形,让学生从“形”上驾驭“反比例函数”的概念,在结合“思索”的几个问题,让学生从“神”神上体验“反比例函数”。 为加深难度,我又补充了几个练
3、习: 1、为何值时,为反比例函数? 2是的反比例函数,是的正比例函数,则与成什么关系? 关于课堂教学: 由于备课充分,我信念十足,课堂上心情饱满,学生们也受到我的影响,精神饱满,课堂气氛相对活跃。 在复习“函数”这一概念的时候,许多学生显露出难色,明显不是遗忘了就是不知到如何表达。我举了两个简洁的实例,学生们马上就回忆起函数的本质含义,为学习反比例函数做了很好的铺垫。一路走来,特别轻松。 对反比例函数一般式的变形,是课堂教学中较胜利的一笔,就是因为这一探究过程,对于我补充的练习1这类属中等难度的题型,班级中成果偏下的同学也能很好的驾驭。 而对于练习3,对于初学反比例函数的学生来说,有点难度,大
4、部分学生显露出感爱好的神情,不少学生能很好得解答此类题。 阅历感想: 1、课前仔细打算,对授课效果的影响是不容忽视的。 2、老师的精神状态干脆影响学生的精神状态。 3、数学教学肯定要重概念,抓本质。 4、课堂上要注意学生情感,表情,可适当调整教学深度。 #447240北师大版八年级数学上册教案2 一、学习目标:1.经验探究平方差公式的过程. 2.会推导平方差公式,并能运用公式进行简洁的运算. 二、重点难点 重点: 平方差公式的推导和应用 难点: 理解平方差公式的结构特征,敏捷应用平方差公式. 三、合作学习 你能用简便方法计算下列各题吗? (1)20011999 (2)9981002 导入新课:
5、 计算下列多项式的积. (1)(x+1)(x-1) (2)(m+2)(m-2) (3)(2x+1)(2x-1) (4)(x+5y)(x-5y) 结论:两个数的和与这两个数的差的积,等于这两个数的平方差. 即:(a+b)(a-b)=a2-b2 四、精讲精练 例1:运用平方差公式计算: (1)(3x+2)(3x-2) (2)(b+2a)(2a-b) (3)(-x+2y)(-x-2y) 例2:计算: (1)10298 (2)(y+2)(y-2)-(y-1)(y+5) 随堂练习 计算: (1)(a+b)(-b+a) (2)(-a-b)(a-b) (3)(3a+2b)(3a-2b) (4)(a5-b2)
6、(a5+b2) (5)(a+2b+2c)(a+2b-2c) (6)(a-b)(a+b)(a2+b2) 五、小结:(a+b)(a-b)=a2-b2 第三十五学时:4.2.2. 完全平方公式(一) 一、学习目标:1.完全平方公式的推导及其应用. 2.完全平方公式的几何说明. 二、重点难点: 重点: 完全平方公式的推导过程、结构特点、几何说明,敏捷应用 难点: 理解完全平方公式的结构特征并能敏捷应用公式进行计算 三、合作学习 .提出问题,创设情境 一位老人特别喜爱孩子.每当有孩子到他家做客时,老人都要拿出糖果款待他们.来一个孩子,老人就给这个孩子一块糖,来两个孩子,老人就给每个孩子两块塘, (1)第
7、一天有a个男孩去了老人家,老人一共给了这些孩子多少块糖? (2)其次天有b个女孩去了老人家,老人一共给了这些孩子多少块糖? (3)第三天这(a+b)个孩子一起去看老人,老人一共给了这些孩子多少块糖? (4)这些孩子第三天得到的糖果数与前两天他们得到的糖果总数哪个多?多多少?为什么? .导入新课 计算下列各式,你能发觉什么规律? (1)(p+1)2=(p+1)(p+1)=_;(2)(m+2)2=_; (3)(p-1)2=(p-1)(p-1)=_;(4)(m-2)2=_; (5)(a+b)2=_;(6)(a-b)2=_. 两数和(或差)的平方,等于它们的平方和,加(或减)这两个数的积的二倍的2倍.
8、 (a+b)2=a2+2ab+b2 (a-b)2=a2-2ab+b2 四、精讲精练 例1、应用完全平方公式计算: (1)(4m+n)2 (2)(y- )2 (3)(-a-b)2 (4)(b-a)2 例2、用完全平方公式计算: (1)1022 (2)992 随堂练习 第三十六学时:14.2.2 完全平方公式(二) 一、学习目标:1.添括号法则. 2.利用添括号法则敏捷应用完全平方公式 二、重点难点 重点: 理解添括号法则,进一步熟识乘法公式的合理利用 难点: 在多项式与多项式的乘法中适当添括号达到应用公式的目的. 三、合作学习 .提出问题,创设情境 请同学们完成下列运算并回忆去括号法则. (1)
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 北师大 八年 级数 上册 教案
限制150内