2022年初中数学几何题解题技巧.docx
《2022年初中数学几何题解题技巧.docx》由会员分享,可在线阅读,更多相关《2022年初中数学几何题解题技巧.docx(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2022年初中数学几何题解题技巧 立体几何是初中数学中的重要内容,也是学习的难点,而且在中考中立体几何属于必考点,通常在一个题目中会包含多个立体几何的考查点,驾驭立体几何解题技巧至关重要。那么接下来给大家共享一些关于初中数学几何题解题技巧,希望对大家有所帮助。 一.添协助线有二种状况 1按定义添协助线: 如证明二直线垂直可延长使它们,相交后证交角为90;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添协助线。 2按基本图形添协助线: 每个几何定理都有与它相对应的几何图形,我们 把它叫做基本图形,添协助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应当
2、叫做“补图”!这样可防止乱添线,添协助线也有规律可循。举例如下: (1)平行线是个基本图形: 当几何中出现平行线时添协助线的关键是添与二条平行线都相交的等第三条直线 (2)等腰三角形是个简洁的基本图形: 当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。 (3)等腰三角形中的重要线段是个重要的基本图形: 出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。 (4)直角三角形斜边上中线基本图形 出现直角三角形斜边上的中点往往添斜边上的中线。出现
3、线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。 (5)三角形中位线基本图形 几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。 (6)全等三角形: 全等三角形有轴对称形,中心对称形,旋转形与平移形等;假如出现两条相等线段或两个档相等角关于某始终线
4、成轴对称就可以添加轴对称形全等三角形:或添对称轴,或将三角形沿对称轴翻转。当几何问题中出现一组或两组相等线段位于一组对顶角两边且成始终线时可添加中心对称形全等三角形加以证明,添加方法是将四个端点两两连结或过二端点添平行线 (7)相像三角形: 相像三角形有平行线型(带平行线的相像三角形),相交线型,旋转型;当出现相比线段重叠在始终线上时(中点可看成比为1)可添加平行线得平行线型相像三角形。若平行线过端点添则可以分点或另一端点的线段为平行方向,这类题目中往往有多种浅线方法。 (8)特别角直角三角形 当出现30,45,60,135,150度特别角时可添加特别角直角三角形,利用45角直角三角形三边比为
5、1:1:2;30度角直角三角形三边比为1:2:3进行证明 (9)半圆上的圆周角 出现直径与半圆上的点,添90度的圆周角;出现90度的圆周角则添它所对弦-直径;平面几何中总共只有二十多个基本图形就像房子不外有一砧,瓦,水泥,石灰,木等组成一样。 二.基本图形的协助线的画法 1.三角形问题添加协助线方法 方法1:有关三角形中线的题目,常将中线加倍。含有中点的题目,经常利用三角形的中位线,通过这种方法,把要证的结论恰当的转移,很简单地解决了问题。 方法2:含有平分线的题目,常以角平分线为对称轴,利用角平分线的性质和题中的条件,构造出全等三角形,从而利用全等三角形的学问解决问题。 方法3:结论是两线段
6、相等的题目常画协助线构成全等三角形,或利用关于平分线段的一些定理。 方法4:结论是一条线段与另一条线段之和等于第三条线段这类题目,常采纳截长法或补短法,所谓截长法就是把第三条线段分成两部分,证其中的一部分等于 第一条线段,而另一部分等于其次条线段。 2.平行四边形中常用协助线的添法 平行四边形(包括矩形、正方形、菱形)的两组对边、对角和对角线都具有某些相同性质,所以在添协助线方法上也有共同之处,目的都是造就线段的平行、垂直,构成三角形的全等、相像,把平行四边形问题转化成常见的三角形、正方形等问题处理,其常用方法有下列几种,举例简解如下: (1)连对角线或平移对角线: (2)过顶点作对边的垂线构
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 年初 数学 几何 题解 技巧
限制150内