【数学】2011年高考试题——文(陕西卷)解析版.doc
《【数学】2011年高考试题——文(陕西卷)解析版.doc》由会员分享,可在线阅读,更多相关《【数学】2011年高考试题——文(陕西卷)解析版.doc(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2011年普通高等学校招生全国统一考试陕西卷(文科)全解全析一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(本大题共10小题,每小题5分,共50分)1设,是向量,命题“若,则”的逆命题是 ( )(A)若,则 (B)若,则(C)若,则 (D)若,则【分析】首先确定原命题的条件和结论,然后交换条件和结论的位置即可得到逆命题。【解】选D 原命题的条件是,作为逆命题的结论;原命题的结论是,作为逆命题的条件,即得逆命题“若,则”,故选D2设抛物线的顶点在原点,准线方程为,则抛物线的方程是 ( )(A) (B) (C) (D)【分析】由准线确定抛物线的位置和开口方向是判断的关键【解】选C
2、由准线方程得,且抛物线的开口向右(或焦点在轴的正半轴),所以3.设,则下列不等式中正确的是 ( ) (A) (B)(c) (D) 【分析】根据不等式的性质,结合作差法,放缩法,基本不等式或特殊值法等进行比较【解】选B (方法一)已知和,比较与,因为,所以,同理由得;作差法:,所以,综上可得;故选B(方法二)取,则,所以4. 函数的图像是 ( ) 【分析】已知函数解析式和图像,可以用取点验证的方法判断【解】选B 取,则,选项B,D符合;取,则,选项B符合题意2、 某几何体的三视图如图所示,则它的体积是( )6. 7. 8. 8-29.【分析】根据已知的三视图想象出空间几何体,然后由几何体的组成和
3、有关几何体体积公式进行计算【解】选A 由几何体的三视图可知几何体为一个组合体,即一个正方体中间去掉一个圆锥体,所以它的体积是.6.方程在内 ( )(A)没有根 (B)有且仅有一个根(C) 有且仅有两个根 (D)有无穷多个根【分析】数形结合法,构造函数并画出函数的图象,观察直观判断【解】选C 构造两个函数和,在同一个坐标系内画出它们的图像,如图所示,观察知图像有两个公共点,所以已知方程有且仅有两个根7.如右框图,当时,等于( ) (A) 7 (B) 8 (C)10 (D)11【分析】按照程序框图的逻辑顺序进行计算【解】选B ;又,显然不成立,即为“否”,有,即,此时有,解得, 符合题意,故选B8
4、.设集合, 为虚数单位,R,则为( ) (A)(0,1) (B)(0,1 (C)0,1) (D)0,1【分析】确定出集合的元素是关键。本题综合了三角函数、复数 的模,不等式等知识点。【解】选C ,所以;因为,即,所以,又因为R,所以,即;所以,故选C.9设 ,是变量和的个样本点,直线是由这些样本点通过最小二乘法得到的线性回归直线(如图),以下结论正确的是( )(A) 直线过点 (B)和的相关系数为直线的斜率(C)和的相关系数在0到1之间(D)当为偶数时,分布在两侧的样本点的个数一定相同【分析】根据最小二乘法的有关概念:样本点的中心,相关系数线,性回归方程的意义等进行判断【解】选A选项具体分析结
5、论A回归直线一定过样本点中心;由回归直线方程的计算公式可知直线必过点正确B相关系数用来衡量两个变量之间的相关程度,直线的斜率表示直线的倾斜程度;它们的计算公式也不相同不正确C相关系数的值有正有负,还可以是0;当相关系数在0到1之间时,两个变量为正相关,在到0之间时,两个变量负相关不正确D两侧的样本点的个数分布与的奇偶性无关,也不一定是平均分布不正确10植树节某班20名同学在一段直线公路一侧植树,每人植一棵,相邻两棵树相距10米,开始时需将树苗集中放置在某一树坑旁边,现将树坑从1到20依次编号,为使各位同学从各自树坑前来领取树苗所走的路程总和最小,树苗可以放置的两个最佳坑位的编号为( )(A)和
6、 (B)和 (C) 和 (D) 和【分析】根据选项分别计算四种情形的路程和;或根据路程和的变化规律直接得出结论【解】选D (方法一)选项具体分析结论A和:比较各个路程和可知D符合题意B:=2000C:=2000D和:路程和都是2000(方法二)根据图形的对称性,树苗放在两端的树坑旁边,所得路程总和相同,取得一个最值;所以从两端的树坑向中间移动时,所得路程总和的变化相同,最后移到第10个和第11个树坑旁时,所得的路程总和达到另一个最值,所以计算两个路程和进行比较即可。树苗放在第一个树坑旁,则有路程总和是;树苗放在第10个(或第11个)树坑旁边时,路程总和是,所以路程总和最小为2000米.(2)
7、填空题:把答案填在答题卡相应题号后的横线上( 本大题共5小题,每小题5分,共 25分)11设,则_.【分析】由算起,先判断的范围,是大于0,还是不大于0,;再判断作为自变量的值时的范围,最后即可计算出结果【解】,所以,即【答案】12如图,点在四边形ABCD内部和边界上运动,那么的最小值为_.【分析】本题为线性规划问题,采用数形结合法解答,解答本题的关键是确 定目标函数过哪一个点时取得最小值【解】目标函数,当时,所以当取得最大值时, 的值最小;移动直线,当直线移动到过点A时,最大,即的值最小,此时【答案】113观察下列等式1=12+3+4=93+4+5+6+7=254+5+6+7+8+9+10=
8、49 照此规律,第五个等式应为_.【分析】归纳总结时,看等号左边是子的变化规律,右边结果的特点,根据以上规律写出第五个等式,注意行数、项数及其变化规律是解答本题的关键【解】把已知等式与行数对应起来,则每一个等式的左边的式子的第一个数是行数,加数的个数是;等式右边都是完全平方数, 行数 等号左边的项数1=1 1 12+3+4=9 2 33+4+5+6+7=25 3 54+5+6+7+8+9+10=49 4 7则第5行等号的左边有9项,右边是9的平方,所以,即【答案】(或)14设,一元二次方程有整数根的充要条件是 【分析】直接利用求根公式进行计算,然后用完全平方数、整除等进行判断计算【解】,因为是
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 2011 年高 考试题 陕西 解析
限制150内