2022年初二数学的知识点2022.docx
《2022年初二数学的知识点2022.docx》由会员分享,可在线阅读,更多相关《2022年初二数学的知识点2022.docx(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2022年初二数学的知识点2022 学问是取之不尽,用之不竭的。只有限度地挖掘它,才能体会到学习的乐趣。任何一门学科的学问都须要大量的记忆和练习来巩固。虽然辛苦,但也伴随着欢乐!下面是我给大家整理的一些初二数学的学问点,希望对大家有所帮助。 初二上学期数学学问点归纳 分式方程 一、理解定义 1、分式方程:含分式,并且分母中含未知数的方程分式方程。 2、解分式方程的思路是: (1)在方程的两边都乘以最简公分母,约去分母,化成整式方程。 (2)解这个整式方程。 (3)把整式方程的根带入最简公分母,看结果是不是为零,使最简公分母为零的根是原方程的增根,必需舍去。 (4)写出原方程的根。 “一化二解三
2、检验四总结” 3、增根:分式方程的增根必需满意两个条件: (1)增根是最简公分母为0;(2)增根是分式方程化成的整式方程的.根。 4、分式方程的解法: (1)能化简的先化简(2)方程两边同乘以最简公分母,化为整式方程; (3)解整式方程;(4)验根; 注:解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为0,这样就产生了增根,因此分式方程肯定要验根。 分式方程检验方法:将整式方程的解带入最简公分母,假如最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。 5、分式方程解实际问题 步骤:审题设未知数列方程解方程检验写出答案,检验时要留意从方程本身和实际
3、问题两个方面进行检验。 二、轴对称图形: 一个图形沿一条直线对折,直线两旁的部分能够完全重合。这条直线叫做对称轴。相互重合的点叫做对应点。 1、轴对称: 两个图形沿一条直线对折,其中一个图形能够与另一个图形完全重合。这条直线叫做对称轴。相互重合的点叫做对应点。 2、轴对称图形与轴对称的区分与联系: (1)区分。轴对称图形探讨的是“一个图形与一条直线的对称关系”;轴对称探讨的是“两个图形与一条直线的对称关系”。 (2)联系。把轴对称图形中“对称轴两旁的部分看作两个图形”便是轴对称;把轴对称的“两个图形看作一个整体”便是轴对称图形。 3、轴对称的性质: (1)成轴对称的两个图形全等。 (2)对称轴
4、与连结“对应点的线段”垂直。 (3)对应点到对称轴的距离相等。 (4)对应点的连线相互平行。 三、用坐标表示轴对称 1、点(x,y)关于x轴对称的点的坐标为(x,-y); 2、点(x,y)关于y轴对称的点的坐标为(-x,y); 3、点(x,y)关于原点对称的点的坐标为(-x,-y)。 四、关于坐标轴夹角平分线对称 点P(x,y)关于第一、三象限坐标轴夹角平分线y=x对称的点的坐标是(y,x) 点P(x,y)关于其次、四象限坐标轴夹角平分线y=-x对称的点的坐标是(-y,-x) 八年级上册数学学问点 1、全等三角形的对应边、对应角相等 2、边角边公理(SAS)有两边和它们的夹角对应相等的两个三角
5、形全等 3、角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等 4、推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等 5、边边边公理(SSS)有三边对应相等的两个三角形全等 6、斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等 7、定理1在角的平分线上的点到这个角的两边的距离相等 8、定理2到一个角的两边的距离相同的点,在这个角的平分线上 9、角的平分线是到角的两边距离相等的全部点的集合 10、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角) 11、推论1等腰三角形顶角的平分线平分底边并且垂直于底边 12、等腰三角形的顶角平分线、底边上
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 年初 数学 知识点
限制150内