2022年初三北师大版数学知识点.docx





《2022年初三北师大版数学知识点.docx》由会员分享,可在线阅读,更多相关《2022年初三北师大版数学知识点.docx(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2022年初三北师大版数学知识点 学习从来无捷径,按部就班登高峰。假如说学习肯定有捷径,那只能是勤奋,因为努力恒久不会骗人。学习须要勤奋,做任何事情都须要勤奋。下面是我给大家整理的一些初三数学的学问点,希望对大家有所帮助。 九年级数学学问点 函数的图像与一元二次方程 1.二次函数y=ax2,y=a(x-h)2,y=a(x-h)2+k,y=ax2+bx+c(各式中,a0)的图象形态相同,只是位置不同 当h0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到, 当h0时,则向左平行移动|h|个单位得到. 当h0,k0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单
2、位,就可以得到y=a(x-h)2+k的图象; 当h0,k0时,将抛物线y=ax2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象; 当h0,k0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)2+k的图象; 当h0,k0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象; 因此,探讨抛物线y=ax2+bx+c(a0)的图象,通过配方,将一般式化为y=a(x-h)2+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清晰了.这给画图象供应了便利. 2.抛物线y=ax2+bx+c(a0)的
3、图象:当a0时,开口向上,当a0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,4ac-b2/4a). 3.抛物线y=ax2+bx+c(a0),若a0,当x-b/2a时,y随x的增大而减小;当x-b/2a时,y随x的增大而增大.若a0,当x-b/2a时,y随x的增大而增大;当x-b/2a时,y随x的增大而减小. 4.抛物线y=ax2+bx+c的图象与坐标轴的交点: (1)图象与y轴肯定相交,交点坐标为(0,c); (2)当=b2-4ac0,图象与x轴交于两点A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax2+bx+c=0 (a0)的两根.这两点间的距离AB=|
4、x?-x?| 当=0.图象与x轴只有一个交点; 当0.图象与x轴没有交点.当a0时,图象落在x轴的上方,x为任何实数时,都有y0;当a0时,图象落在x轴的下方,x为任何实数时,都有y0. 5.抛物线y=ax2+bx+c的最值:假如a0(a0),则当x=-b/2a时,y最小(大)值=(4ac-b2)/4a. 顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值. 6.用待定系数法求二次函数的解析式 (1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式: y=ax2+bx+c(a0). (2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点
5、式:y=a(x-h)2+k(a0). (3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x?)(x-x?)(a0). 初三数学学问点归纳 直角三角形的判定方法: 判定1:定义,有一个角为90的三角形是直角三角形。 判定2:判定定理:以a、b、c为边的三角形是以c为斜边的直角三角形。假如三角形的三边a,b,c满意a2+b2=c2,那么这个三角形就是直角三角形。(勾股定理的逆定理)。 判定3:若一个三角形30内角所对的边是某一边的一半,则这个三角形是以这条长边为斜边的直角三角形。 判定4:两个锐角互为余角(两角相加等于90)的三角形是直角三角形。 判定5:若两直线相
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 年初 三北 师大 数学 知识点

限制150内