最新受压构件正截面承载力计算ppt课件.ppt
《最新受压构件正截面承载力计算ppt课件.ppt》由会员分享,可在线阅读,更多相关《最新受压构件正截面承载力计算ppt课件.ppt(100页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第第6 6章章 受压构件正截面承载力计算受压构件正截面承载力计算22.板、墙、壳中板、墙、壳中分布钢筋分布钢筋 保护层厚度不应小于表保护层厚度不应小于表9.2.1中相应数值减中相应数值减10mm,且不应,且不应小于小于10mm。3.梁、柱中梁、柱中箍筋箍筋和和构造钢筋构造钢筋 保护层厚度不应小于保护层厚度不应小于15mm。 例题:矩形截面受扭构件,承受扭矩设计值例题:矩形截面受扭构件,承受扭矩设计值T T =41.5 kN=41.5 kNm m ,截面尺寸截面尺寸b bh h300 mm300 mm500 mm 500 mm ,保护层厚度,保护层厚度 C=30 mmC=30 mm。混。混凝土强
2、度等级选用凝土强度等级选用C25C25,箍筋为,箍筋为HPB235HPB235级。纵筋为级。纵筋为HRB335HRB335级。级。 抵抗该扭矩所需的箍筋和纵筋面积,并绘制截面配筋图。抵抗该扭矩所需的箍筋和纵筋面积,并绘制截面配筋图。混凝土结构设计规范混凝土结构设计规范GB 50010_2002还有一些其他规定。还有一些其他规定。第第6 6章章 受压构件正截面承载力计算受压构件正截面承载力计算3第第6 6章章 受压构件正截面承载力计算受压构件正截面承载力计算5第第6 6章章 受压构件正截面承载力计算受压构件正截面承载力计算7第第6 6章章 受压构件正截面承载力计算受压构件正截面承载力计算8第第6
3、 6章章 受压构件正截面承载力计算受压构件正截面承载力计算9N2. 轴心受压构件正截面承载力轴心受压构件正截面承载力由于施工制造误差、荷载位置的偏差、混凝土不由于施工制造误差、荷载位置的偏差、混凝土不均匀性等原因,往往存在一定的均匀性等原因,往往存在一定的初始偏心距初始偏心距以恒载为主的等跨多层房屋内柱、桁架中的受压以恒载为主的等跨多层房屋内柱、桁架中的受压腹杆等,主要承受轴向压力,可腹杆等,主要承受轴向压力,可近似按轴心受压近似按轴心受压构件计算构件计算在实际结构中,在实际结构中,理想的轴心受压构件是不存在的理想的轴心受压构件是不存在的第第6 6章章 受压构件正截面承载力计算受压构件正截面承
4、载力计算102.1 轴压构件性能Behavior of Axial Compressive Member变形条件:syyssEfE 物理关系:200002 0ccccff yysf 平衡条件:ssccAANcs第第6 6章章 受压构件正截面承载力计算受压构件正截面承载力计算1100.0010.00210020030040050020406080100csc fy=540MPa fy=300MPa第第6 6章章 受压构件正截面承载力计算受压构件正截面承载力计算12普通钢箍柱螺旋钢箍柱2.2 受压构件中钢筋的作用? 纵筋的作用纵筋的作用(1)协助混凝土受压,减小截面面积;)协助混凝土受压,减小截面
5、面积;(2)当柱偏心受压时,承担弯矩产生的拉力;)当柱偏心受压时,承担弯矩产生的拉力;(3)减小持续压应力下混凝土收缩和徐变的影响。)减小持续压应力下混凝土收缩和徐变的影响。(4)增加破坏时,构件的延性。)增加破坏时,构件的延性。实验表明,收缩和徐变能把柱截面中的压力实验表明,收缩和徐变能把柱截面中的压力由混凝土向钢筋转移,从而使钢筋压应力不由混凝土向钢筋转移,从而使钢筋压应力不断增长。压应力的增长幅度随配筋率的减小断增长。压应力的增长幅度随配筋率的减小而增大,如果不给配筋率规定一个下限,钢而增大,如果不给配筋率规定一个下限,钢筋中的压应力就可能在持续使用荷载下增长筋中的压应力就可能在持续使用
6、荷载下增长到屈服应力水准。到屈服应力水准。 箍筋的作用箍筋的作用(1)与纵筋形成骨架,便于施工;)与纵筋形成骨架,便于施工;(2)防止纵筋的压屈;)防止纵筋的压屈;(3)对核心混凝土形成约束,提高混)对核心混凝土形成约束,提高混 凝土的抗压强度,增加构件的延性。凝土的抗压强度,增加构件的延性。13 对于对于长细比长细比较较大大的柱子,由各种偶然因素造成的初始偏心距的柱子,由各种偶然因素造成的初始偏心距的影响是不可忽略的,对于的影响是不可忽略的,对于长细比长细比较较小小的柱子,同样存在初始偏的柱子,同样存在初始偏心和侧向挠度,但是影响非常小,可以忽略的。心和侧向挠度,但是影响非常小,可以忽略的。
7、2.3 普通箍筋轴压柱正截面承载力14bhAsANN混凝土压碎钢筋凸出nonNnl混凝土压碎钢筋屈服第一阶段:加载至钢筋屈服第二阶段:钢筋屈服至混凝土压碎轴心受压短柱的破坏形态轴心受压短柱的破坏形态短柱:混凝土压碎,钢筋压屈短柱:混凝土压碎,钢筋压屈轴心受压长柱的破坏形态及其应力重分布轴心受压长柱的破坏形态及其应力重分布(相同材料、截面尺寸相同材料、截面尺寸和配筋和配筋)长柱的承载力短柱的承载力原因?长柱受轴力和弯矩(二次弯矩)的共同作用初始偏心产生附加弯矩初始偏心产生附加弯矩附加弯矩引起挠度附加弯矩引起挠度 加大初始偏心,最终构件是在加大初始偏心,最终构件是在M,N共同作用下破坏共同作用下破
8、坏。长柱:构件压屈长柱:构件压屈15第第6 6章章 受压构件正截面承载力计算受压构件正截面承载力计算16sycsuAfAfNsuluNN suluNN稳定系数稳定系数稳定系数稳定系数主要与柱的主要与柱的长细比长细比l0/b有关有关2.3 普通箍筋轴压柱正截面承载力轴心受压轴心受压短短柱柱轴心受压轴心受压长长柱柱当纵筋配筋率大于当纵筋配筋率大于3时,时,A中应扣中应扣除纵筋截面的面积。除纵筋截面的面积。L0为柱的为柱的计算高度计算高度;b为矩形截面为矩形截面短边尺寸短边尺寸; 17)(9 . 0sycuAfAfNN折减系数折减系数 0.9是考虑初始偏心的影响,以及主是考虑初始偏心的影响,以及主要
9、承受恒载作用的轴压受压柱的可靠性。要承受恒载作用的轴压受压柱的可靠性。2.3 普通箍筋轴压柱正截面承载力当纵筋配筋率大于当纵筋配筋率大于3时,时,A中应扣除纵筋截中应扣除纵筋截面的面积。面的面积。承载力计算公式承载力计算公式 稳定系数,稳定系数,反映受压构件的承载力随长反映受压构件的承载力随长细比增细比增 大而降低的现象。大而降低的现象。NAsfcf y Asbh18l0 构件的计算长度构件的计算长度,与构件端部的支承条件有关。两端铰支一端固定,一端铰支两端固定一端固定,一端自由实际结构按实际结构按规范规定取规范规定取值。值。1.0l0.7l0.5l2.0l第第6 6章章 受压构件正截面承载力
10、计算受压构件正截面承载力计算19n1、柱纵向钢筋直径不小于、柱纵向钢筋直径不小于12mm,纵筋根数不少于纵筋根数不少于4根。根。n2、试验表明,如果纵筋配筋过小,对提高柱的承载力不、试验表明,如果纵筋配筋过小,对提高柱的承载力不大。因此对于轴心受压构件,偏心受压构件全部纵向钢筋大。因此对于轴心受压构件,偏心受压构件全部纵向钢筋配筋率不应小于配筋率不应小于0.6%,同一侧的配筋率不应小于同一侧的配筋率不应小于0.2%.n3、规定柱的全部纵向受压钢筋配筋率不宜大于、规定柱的全部纵向受压钢筋配筋率不宜大于5%.矩形箍筋柱限制条件矩形箍筋柱限制条件第第6 6章章 受压构件正截面承载力计算受压构件正截面
11、承载力计算20例6.1:已知一轴心受压柱的截面尺寸为bh=400400mm,计算长度l0=5.6m,轴心压力设计值为2500kN,混凝土采用C30,纵筋采用HRB335级,箍筋采用HPB235级。试配纵筋与箍筋。1) 确定基本数据确定基本数据fc=14.3Mpafy=300Mpa2) 计算配置纵向受力钢筋计算配置纵向受力钢筋056001.4400lb322500 1014.3 400 4000.90.9 0.922438300csyNf AAmmf0.92配置配置820纵向受力钢筋,面积纵向受力钢筋,面积2513mm2第第6 6章章 受压构件正截面承载力计算受压构件正截面承载力计算213) 验
12、算纵筋配筋率验算纵筋配筋率min25131.6%0.6%400 400sAbh故配置故配置820纵向受力钢筋(图)纵向受力钢筋(图)4) 根据构造要求配置箍筋根据构造要求配置箍筋选择配置选择配置6250mm,间距小于短边长度间距小于短边长度400mm,小于小于15d=300mm,满足构造要求。,满足构造要求。第第6 6章章 受压构件正截面承载力计算受压构件正截面承载力计算222.4 螺旋箍筋轴压柱正截面承载力混凝土圆柱体三向受压状态的纵向抗压强度混凝土圆柱体三向受压状态的纵向抗压强度214cf螺旋箍筋柱与普通箍筋柱力位移曲线的比较螺旋箍筋柱与普通箍筋柱力位移曲线的比较第第6 6章章 受压构件正
13、截面承载力计算受压构件正截面承载力计算232 fyAss1 fyAss12sdcors(a)(b)(c)122ssycorAfsdcorssydsAf122118yssccorf Affs d124.1cff1ucorysNf Af A corcorssysycorcAdsAfAfAf18达到极限状态时(达到极限状态时(保护层已剥落,不考虑保护层已剥落,不考虑)第第6 6章章 受压构件正截面承载力计算受压构件正截面承载力计算24)(9 . 00ssysycorcuAfAfAfNN螺旋箍筋对承载力的影响系数螺旋箍筋对承载力的影响系数 ,当,当 fcu,k50N/mm2时,取时,取 = 2.0;当
14、当 fcu,k=80N/mm2时,取时,取 =1.7,其间直线插值。,其间直线插值。01sssscorAsAdsAdAsscorss1002ssysycorcuAfAfAfN fyAss1 fyAss12sdcor(c)螺旋箍筋螺旋箍筋换算成换算成相当的相当的纵筋面积纵筋面积第第6 6章章 受压构件正截面承载力计算受压构件正截面承载力计算25 采用螺旋箍筋可有效提高柱的轴心受压承载力。但配置过多,极限承载采用螺旋箍筋可有效提高柱的轴心受压承载力。但配置过多,极限承载力提高过大,则会在远未达到极限承载力之前保护层剥落,从而影响正常力提高过大,则会在远未达到极限承载力之前保护层剥落,从而影响正常使
15、用。使用。 规范规范规定:规定:(1)按螺旋箍筋计算的承载力不应大于按普通箍筋柱受压承载力的按螺旋箍筋计算的承载力不应大于按普通箍筋柱受压承载力的50%,同时同时不应小于不应小于按普通箍筋柱计算的受压承载力;按普通箍筋柱计算的受压承载力;(2)对长细比过大柱,由于纵向弯曲变形较大,截面不是全部受压,螺对长细比过大柱,由于纵向弯曲变形较大,截面不是全部受压,螺 旋箍筋的约束作用得不到有效发挥。因此,对长细比旋箍筋的约束作用得不到有效发挥。因此,对长细比l0/d大于大于12的柱的柱 不考虑螺旋箍筋的约束作用;不考虑螺旋箍筋的约束作用;(3)螺旋箍筋的约束效果与其截面面积螺旋箍筋的约束效果与其截面面
16、积Ass1和间距和间距S有关,为保证约束效有关,为保证约束效 果,螺旋箍筋的换算面积果,螺旋箍筋的换算面积Ass0不得小于不得小于全部纵筋全部纵筋As面积的面积的25%;(4)螺旋箍筋的间距螺旋箍筋的间距S不应大于不应大于dcor/5,且不大于,且不大于80mm,同时为方便施工,同时为方便施工,S也不应小于也不应小于40mm。螺旋箍筋柱限制条件第第6 6章章 受压构件正截面承载力计算受压构件正截面承载力计算26例例6.2 某展示厅内一根钢筋混凝土柱,按建筑设计要求截面某展示厅内一根钢筋混凝土柱,按建筑设计要求截面为圆形,直径不大于为圆形,直径不大于500mm,该柱承受的轴心压力设计值该柱承受的
17、轴心压力设计值N=4600kN,柱的计算长度柱的计算长度l0=5.25m, 混凝土强度等级为混凝土强度等级为C25,纵筋用纵筋用HRB335级钢筋,箍筋用级钢筋,箍筋用HPB235级钢筋。试级钢筋。试进行该柱的设计进行该柱的设计。1)按普通箍筋柱设计)按普通箍筋柱设计5 .1050052500dl95. 02231014945009 .1195. 09 . 010460030019 . 01mmAfNfAcys%17. 50517. 04500101492AAs 由于配筋率太大,且长细比又满足由于配筋率太大,且长细比又满足4011.4kN满足要求,配筋合适。满足要求,配筋合适。30 偏压构件是
18、同时受到轴向压力偏压构件是同时受到轴向压力N N和弯矩和弯矩M M的作的作用,等效于对截面形心的偏心距:用,等效于对截面形心的偏心距:e0=M/N的偏心压力的偏心压力的作用。的作用。 图图6-16-1偏心受压构件与压弯构件图偏心受压构件与压弯构件图偏心受压构件正截面的受力过程和破坏形态偏心受压构件正截面的受力过程和破坏形态31工程应用工程应用 偏心受压构件偏心受压构件:拱桥的钢筋砼拱肋,桁架的上弦杆,拱桥的钢筋砼拱肋,桁架的上弦杆, 刚架的立柱,柱式墩(台)的墩(台)刚架的立柱,柱式墩(台)的墩(台)柱等。柱等。 偏心受压:偏心受压: ( (压弯构件压弯构件) )单向偏心受力构件单向偏心受力构
19、件双向偏心受力构件双向偏心受力构件大偏心受压构件大偏心受压构件小偏心受压构件小偏心受压构件压弯构件压弯构件: 截面上同时承受轴心压力和弯矩的构件。截面上同时承受轴心压力和弯矩的构件。偏心距偏心距: 压力压力N N的作用点离构件截面形心的距离的作用点离构件截面形心的距离e e0 032偏心距偏心距e0=0时,时,轴心受压轴心受压当当e0时,即时,即N=0,受弯构件受弯构件偏心受压构件的受力性能和破坏形态界于偏心受压构件的受力性能和破坏形态界于轴心受压轴心受压构件和构件和受弯受弯构件构件。AssAh0asasb6.3.1 偏心受压短柱的破坏形态偏心受压构件=M=N e0NAssA压弯构件 Ne0A
20、ssA336.3.1 偏心受压短柱的破坏形态大量试验表明:构件截面变形符合平截面假定,大量试验表明:构件截面变形符合平截面假定,偏压构件的最终破坏是由于混凝土压碎而造成的。偏压构件的最终破坏是由于混凝土压碎而造成的。偏心受压构件的破坏形态与偏心受压构件的破坏形态与偏心距偏心距e0和和纵向钢筋配纵向钢筋配筋率筋率有关。有关。偏心受压偏心受压短柱短柱的破坏形态:的破坏形态:(1)受拉破坏形态受拉破坏形态(大偏心受压);(大偏心受压);(2)受压破坏形态受压破坏形态(小偏心受压)。(小偏心受压)。34M较大,较大,N较小较小偏心距偏心距e0较大较大在在靠近靠近轴向力的一侧受轴向力的一侧受压压,远离远
21、离轴向力的一侧受轴向力的一侧受拉拉。NMNe0(大偏心受压破坏)(大偏心受压破坏)1. 受拉破坏受拉破坏35随着荷载的增加,截面受拉侧混凝随着荷载的增加,截面受拉侧混凝土出现横向裂缝,受拉钢筋土出现横向裂缝,受拉钢筋As的应力随的应力随荷载增加发展较快,荷载增加发展较快,首先达到屈服首先达到屈服;最后受压侧钢筋最后受压侧钢筋As 受压屈服,压区受压屈服,压区混凝土压碎而达到破坏。混凝土压碎而达到破坏。此后,裂缝迅速开展,受压区高此后,裂缝迅速开展,受压区高度减小;度减小;1 .受拉破坏特征受拉破坏特征(大偏心受压破坏)(大偏心受压破坏)N N 36形成这种破坏的条件是:形成这种破坏的条件是:偏
22、心距偏心距e0较大,且受拉侧纵向钢筋配筋较大,且受拉侧纵向钢筋配筋率合适,通常称为率合适,通常称为大偏心受压大偏心受压。破坏的特点是:破坏的特点是:塑性破坏塑性破坏,受拉钢筋先达到屈服强度,最后受压,受拉钢筋先达到屈服强度,最后受压区钢筋受压屈服,受压区混凝土压碎。区钢筋受压屈服,受压区混凝土压碎。C=fcbxTs=sAsM fcx=xncf1syAfbxfCc1破坏具有明显预兆破坏具有明显预兆,变形能力较大,变形能力较大,破坏特征与配有受压钢筋的破坏特征与配有受压钢筋的适筋梁相似适筋梁相似,承载力主要取决于受拉侧钢筋。,承载力主要取决于受拉侧钢筋。1 .受拉破坏受拉破坏(大偏心受压破坏)(大
23、偏心受压破坏)e fyAs fyAsN1 fcbxx037受压破坏的条件有:受压破坏的条件有: 当相对偏心距当相对偏心距e e0 0/ /h h0 0较小,截面全部受压或大部分较小,截面全部受压或大部分受压;受压; 或虽然相对偏心距或虽然相对偏心距e e0 0/ /h h0 0较大,但纵向钢筋较大,但纵向钢筋As配置配置较多时较多时(类似于超筋梁)(类似于超筋梁)(小偏心受压破坏)(小偏心受压破坏)2. 受压破坏受压破坏NNAs太太多多38 当轴力当轴力N的相对偏心距较小时,截面的相对偏心距较小时,截面全部受压或大部分全部受压或大部分受压受压; 离轴力离轴力N较近一侧较近一侧混凝土和钢筋的混凝
24、土和钢筋的应力较大应力较大,另一侧钢,另一侧钢筋应力较小;筋应力较小;2、受压破坏特征、受压破坏特征(小偏心受压破坏)(小偏心受压破坏)39截面最后是由于截面最后是由于离轴力离轴力N较近一侧较近一侧混凝土首先压碎而达到破坏混凝土首先压碎而达到破坏,离轴力离轴力N较近一侧钢筋较近一侧钢筋As 受压屈服受压屈服,离轴力,离轴力N较远一侧的钢筋较远一侧的钢筋As未未受拉受拉屈服。屈服。2、受压破坏特征、受压破坏特征(小偏心受压破坏)(小偏心受压破坏) sAsfyAsN1 fcbxxe06.2 偏心受压构件正截面受压破坏形态N N 40承载力主要承载力主要取决于取决于离轴力离轴力N较较近一侧混凝土和钢
25、筋,离轴力近一侧混凝土和钢筋,离轴力N较远一侧钢筋较远一侧钢筋未达到未达到屈服。屈服。 破坏具有破坏具有脆性性质脆性性质。2、受压破坏特征、受压破坏特征(小偏心受压破坏)(小偏心受压破坏) sAsfyAsN1 fcbxxe06.2 偏心受压构件正截面受压破坏形态413、受拉破坏和受压破坏的界限、受拉破坏和受压破坏的界限即即受拉钢筋屈服受拉钢筋屈服与与受压区混凝土边缘极限压应变受压区混凝土边缘极限压应变 cu同时达到。同时达到。与适筋梁和超筋梁的界限情况类似。与适筋梁和超筋梁的界限情况类似。因此,其因此,其相对界限受压区高度相对界限受压区高度仍为仍为:scuybEf1 大小偏心受压的分界:大小偏
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 最新 受压 构件 截面 承载力 计算 ppt 课件
限制150内