最新同济大学第五版高等数学(下)课件D112数项级数及审敛法幻灯片.ppt
《最新同济大学第五版高等数学(下)课件D112数项级数及审敛法幻灯片.ppt》由会员分享,可在线阅读,更多相关《最新同济大学第五版高等数学(下)课件D112数项级数及审敛法幻灯片.ppt(33页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、一、正项级数及其审敛法一、正项级数及其审敛法若,0nu1nnu定理定理 1. 正项级数1nnu收敛部分和序列nS),2, 1(n有界 .若1nnu收敛 , ,收敛则nS,0nu部分和数列nSnS有界, 故nS1nnu从而又已知故有界.则称为正项级数 .单调递增, 收敛 , 也收敛.证证: “ ”“ ”机动 目录 上页 下页 返回 结束 定理定理3. (比较审敛法的极限形式),1nnu1nnv,limlvunnn则有两个级数同时收敛或发散 ;(2) 当 l = 0 ,1收敛时且nnv;1也收敛nnu(3) 当 l = ,1发散时且nnv.1也发散nnu证证: 据极限定义, 0对,ZN存在lnnv
2、u)(l设两正项级数满足(1) 当 0 l 时,时当Nn 机动 目录 上页 下页 返回 结束 nnnvluvl)()(, l取由定理 2 可知与1nnu1nnv同时收敛或同时发散 ;)(Nn ),()(Nnvlunn利用(3) 当l = 时,ZN存在,时当Nn ,1nnvu即nnvu 由定理2可知, 若1nnv发散 , ;1也收敛则nnu(1) 当0 l 时,(2) 当l = 0时,由定理2 知1nnv收敛 , 若.1也发散则nnu机动 目录 上页 下页 返回 结束 ,nunv,limlvunnn是两个正项级数正项级数, (1) 当 时,l0两个级数同时收敛或发散 ;特别取,1pnnv 可得如
3、下结论 :对正项级数,nu,1pl0lnnnlimpn,1pl0发散nu(2) 当 且 收敛时,0lnv(3) 当 且 发散时, lnv也收敛 ;nu也发散 .nu收敛nu机动 目录 上页 下页 返回 结束 的敛散性. nnn1lim例例3. 判别级数11sinnn的敛散性 .解解: nlim sin1nn11根据比较审敛法的极限形式知.1sin1发散nn例例4. 判别级数1211lnnn解解:nlim221limnnn1根据比较审敛法的极限形式知.11ln12收敛nnnn1sin)1ln(21n21n2n211lnn机动 目录 上页 下页 返回 结束 nnnuu1lim由定理定理4 . 比值
4、审敛法 ( Dalembert 判别法)设 nu为正项级数, 且,lim1nnnuu则(1) 当1(2) 当1证证: (1),1时当11nnuunnuu)(112)(nu1)(NNnu, 1使取收敛 ,.收敛nu时, 级数收敛 ;或时, 级数发散 .,ZN知存在,时当Nn k)(由比较审敛法可知机动 目录 上页 下页 返回 结束 ,1时或, 0,NuZN必存在, 11nnuu,0limNnnuu因此所以级数发散.Nn 当时(2) 当nnuu11nuNu1lim1nnnuu说明说明: 当时,级数可能收敛也可能发散.例如例如, , p 级数:11npnnnnuu1limppnnn1) 1(1lim
5、1但, 1p级数收敛 ;, 1p级数发散 .从而机动 目录 上页 下页 返回 结束 limn例例5. 讨论级数)0(11xxnnn的敛散性 .解解: nnnuu1limnxn) 1( 1nxnx根据定理4可知:,10时当 x级数收敛 ;,1时当 x级数发散 ;.1发散级数nn,1时当 x机动 目录 上页 下页 返回 结束 对任意给定的正数 ,limnnnu定理定理5. 根值审敛法 ( Cauchy判别法) 设 1nnu为正项级,limnnnu则;,1) 1(级数收敛时当 .,1)2(级数发散时当 证明提示证明提示: ,ZN存在nnu有时当,Nn 即nnnu)()(分别利用上述不等式的左,右部分
6、, 可推出结论正确., )1(1111数, 且机动 目录 上页 下页 返回 结束 时 , 级数可能收敛也可能发散 .1例如 , p 级数 :11pnnpnnnnu1)(1n说明说明 :,1pnnu 但, 1p级数收敛 ;, 1p级数发散 .机动 目录 上页 下页 返回 结束 例例6. 证明级数11nnn收敛于S ,似代替和 S 时所产生的误差 . 解解: : nnnnnu1n1)(0n由定理5可知该级数收敛 .令,nnSSr则所求误差为21)2(1) 1(10nnnnnr21) 1(1) 1(1nnnn1) 1(1nnnnn) 1(11111n并估计以部分和 Sn 近 机动 目录 上页 下页
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 最新 同济大学 第五 高等数学 课件 D112 级数 审敛法 幻灯片
限制150内